Metamath Proof Explorer


Theorem mplelbas

Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p P=ImPolyR
mplval.s S=ImPwSerR
mplval.b B=BaseS
mplval.z 0˙=0R
mplbas.u U=BaseP
Assertion mplelbas XUXBfinSupp0˙X

Proof

Step Hyp Ref Expression
1 mplval.p P=ImPolyR
2 mplval.s S=ImPwSerR
3 mplval.b B=BaseS
4 mplval.z 0˙=0R
5 mplbas.u U=BaseP
6 breq1 f=XfinSupp0˙ffinSupp0˙X
7 1 2 3 4 5 mplbas U=fB|finSupp0˙f
8 6 7 elrab2 XUXBfinSupp0˙X