Metamath Proof Explorer


Theorem mplval

Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p P=ImPolyR
mplval.s S=ImPwSerR
mplval.b B=BaseS
mplval.z 0˙=0R
mplval.u U=fB|finSupp0˙f
Assertion mplval P=S𝑠U

Proof

Step Hyp Ref Expression
1 mplval.p P=ImPolyR
2 mplval.s S=ImPwSerR
3 mplval.b B=BaseS
4 mplval.z 0˙=0R
5 mplval.u U=fB|finSupp0˙f
6 ovexd i=Ir=RimPwSerrV
7 id s=imPwSerrs=imPwSerr
8 oveq12 i=Ir=RimPwSerr=ImPwSerR
9 7 8 sylan9eqr i=Ir=Rs=imPwSerrs=ImPwSerR
10 9 2 eqtr4di i=Ir=Rs=imPwSerrs=S
11 10 fveq2d i=Ir=Rs=imPwSerrBases=BaseS
12 11 3 eqtr4di i=Ir=Rs=imPwSerrBases=B
13 simplr i=Ir=Rs=imPwSerrr=R
14 13 fveq2d i=Ir=Rs=imPwSerr0r=0R
15 14 4 eqtr4di i=Ir=Rs=imPwSerr0r=0˙
16 15 breq2d i=Ir=Rs=imPwSerrfinSupp0rffinSupp0˙f
17 12 16 rabeqbidv i=Ir=Rs=imPwSerrfBases|finSupp0rf=fB|finSupp0˙f
18 17 5 eqtr4di i=Ir=Rs=imPwSerrfBases|finSupp0rf=U
19 10 18 oveq12d i=Ir=Rs=imPwSerrs𝑠fBases|finSupp0rf=S𝑠U
20 6 19 csbied i=Ir=RimPwSerr/ss𝑠fBases|finSupp0rf=S𝑠U
21 df-mpl mPoly=iV,rVimPwSerr/ss𝑠fBases|finSupp0rf
22 ovex S𝑠UV
23 20 21 22 ovmpoa IVRVImPolyR=S𝑠U
24 reldmmpl ReldommPoly
25 24 ovprc ¬IVRVImPolyR=
26 ress0 𝑠U=
27 25 26 eqtr4di ¬IVRVImPolyR=𝑠U
28 reldmpsr ReldommPwSer
29 28 ovprc ¬IVRVImPwSerR=
30 2 29 eqtrid ¬IVRVS=
31 30 oveq1d ¬IVRVS𝑠U=𝑠U
32 27 31 eqtr4d ¬IVRVImPolyR=S𝑠U
33 23 32 pm2.61i ImPolyR=S𝑠U
34 1 33 eqtri P=S𝑠U