Step |
Hyp |
Ref |
Expression |
1 |
|
mplval.p |
|- P = ( I mPoly R ) |
2 |
|
mplval.s |
|- S = ( I mPwSer R ) |
3 |
|
mplval.b |
|- B = ( Base ` S ) |
4 |
|
mplval.z |
|- .0. = ( 0g ` R ) |
5 |
|
mplval.u |
|- U = { f e. B | f finSupp .0. } |
6 |
|
ovexd |
|- ( ( i = I /\ r = R ) -> ( i mPwSer r ) e. _V ) |
7 |
|
id |
|- ( s = ( i mPwSer r ) -> s = ( i mPwSer r ) ) |
8 |
|
oveq12 |
|- ( ( i = I /\ r = R ) -> ( i mPwSer r ) = ( I mPwSer R ) ) |
9 |
7 8
|
sylan9eqr |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> s = ( I mPwSer R ) ) |
10 |
9 2
|
eqtr4di |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> s = S ) |
11 |
10
|
fveq2d |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( Base ` s ) = ( Base ` S ) ) |
12 |
11 3
|
eqtr4di |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( Base ` s ) = B ) |
13 |
|
simplr |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> r = R ) |
14 |
13
|
fveq2d |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( 0g ` r ) = ( 0g ` R ) ) |
15 |
14 4
|
eqtr4di |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( 0g ` r ) = .0. ) |
16 |
15
|
breq2d |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( f finSupp ( 0g ` r ) <-> f finSupp .0. ) ) |
17 |
12 16
|
rabeqbidv |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } = { f e. B | f finSupp .0. } ) |
18 |
17 5
|
eqtr4di |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } = U ) |
19 |
10 18
|
oveq12d |
|- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( s |`s { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } ) = ( S |`s U ) ) |
20 |
6 19
|
csbied |
|- ( ( i = I /\ r = R ) -> [_ ( i mPwSer r ) / s ]_ ( s |`s { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } ) = ( S |`s U ) ) |
21 |
|
df-mpl |
|- mPoly = ( i e. _V , r e. _V |-> [_ ( i mPwSer r ) / s ]_ ( s |`s { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } ) ) |
22 |
|
ovex |
|- ( S |`s U ) e. _V |
23 |
20 21 22
|
ovmpoa |
|- ( ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = ( S |`s U ) ) |
24 |
|
reldmmpl |
|- Rel dom mPoly |
25 |
24
|
ovprc |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = (/) ) |
26 |
|
ress0 |
|- ( (/) |`s U ) = (/) |
27 |
25 26
|
eqtr4di |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = ( (/) |`s U ) ) |
28 |
|
reldmpsr |
|- Rel dom mPwSer |
29 |
28
|
ovprc |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) ) |
30 |
2 29
|
syl5eq |
|- ( -. ( I e. _V /\ R e. _V ) -> S = (/) ) |
31 |
30
|
oveq1d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( S |`s U ) = ( (/) |`s U ) ) |
32 |
27 31
|
eqtr4d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = ( S |`s U ) ) |
33 |
23 32
|
pm2.61i |
|- ( I mPoly R ) = ( S |`s U ) |
34 |
1 33
|
eqtri |
|- P = ( S |`s U ) |