Step |
Hyp |
Ref |
Expression |
1 |
|
mplval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplval.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
3 |
|
mplval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
mplval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mplval.u |
⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
6 |
|
ovexd |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) ∈ V ) |
7 |
|
id |
⊢ ( 𝑠 = ( 𝑖 mPwSer 𝑟 ) → 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) |
8 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) = ( 𝐼 mPwSer 𝑅 ) ) |
9 |
7 8
|
sylan9eqr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑠 = ( 𝐼 mPwSer 𝑅 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑠 = 𝑆 ) |
11 |
10
|
fveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
13 |
|
simplr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑟 = 𝑅 ) |
14 |
13
|
fveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
15 |
14 4
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 0g ‘ 𝑟 ) = 0 ) |
16 |
15
|
breq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 𝑓 finSupp ( 0g ‘ 𝑟 ) ↔ 𝑓 finSupp 0 ) ) |
17 |
12 16
|
rabeqbidv |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ) |
18 |
17 5
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } = 𝑈 ) |
19 |
10 18
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) = ( 𝑆 ↾s 𝑈 ) ) |
20 |
6 19
|
csbied |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑠 ⦌ ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) = ( 𝑆 ↾s 𝑈 ) ) |
21 |
|
df-mpl |
⊢ mPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑠 ⦌ ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) ) |
22 |
|
ovex |
⊢ ( 𝑆 ↾s 𝑈 ) ∈ V |
23 |
20 21 22
|
ovmpoa |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) ) |
24 |
|
reldmmpl |
⊢ Rel dom mPoly |
25 |
24
|
ovprc |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ∅ ) |
26 |
|
ress0 |
⊢ ( ∅ ↾s 𝑈 ) = ∅ |
27 |
25 26
|
eqtr4di |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( ∅ ↾s 𝑈 ) ) |
28 |
|
reldmpsr |
⊢ Rel dom mPwSer |
29 |
28
|
ovprc |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
30 |
2 29
|
syl5eq |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
31 |
30
|
oveq1d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑆 ↾s 𝑈 ) = ( ∅ ↾s 𝑈 ) ) |
32 |
27 31
|
eqtr4d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) ) |
33 |
23 32
|
pm2.61i |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) |
34 |
1 33
|
eqtri |
⊢ 𝑃 = ( 𝑆 ↾s 𝑈 ) |