Step |
Hyp |
Ref |
Expression |
1 |
|
ply1rcl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1rcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
ply1basf.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
5 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
6 |
|
psr1baslem |
⊢ ( ℕ0 ↑m 1o ) = { 𝑎 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
7 |
|
id |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
9 |
1 8 2
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
10 |
7 9
|
eleqtrdi |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
11 |
4 3 5 6 10
|
mplelf |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ 𝐾 ) |