Metamath Proof Explorer


Theorem ply1basf

Description: Univariate polynomial base set elements are functions. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses ply1rcl.p 𝑃 = ( Poly1𝑅 )
ply1rcl.b 𝐵 = ( Base ‘ 𝑃 )
ply1basf.k 𝐾 = ( Base ‘ 𝑅 )
Assertion ply1basf ( 𝐹𝐵𝐹 : ( ℕ0m 1o ) ⟶ 𝐾 )

Proof

Step Hyp Ref Expression
1 ply1rcl.p 𝑃 = ( Poly1𝑅 )
2 ply1rcl.b 𝐵 = ( Base ‘ 𝑃 )
3 ply1basf.k 𝐾 = ( Base ‘ 𝑅 )
4 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
5 eqid ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) )
6 psr1baslem ( ℕ0m 1o ) = { 𝑎 ∈ ( ℕ0m 1o ) ∣ ( 𝑎 “ ℕ ) ∈ Fin }
7 id ( 𝐹𝐵𝐹𝐵 )
8 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
9 1 8 2 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
10 7 9 eleqtrdi ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )
11 4 3 5 6 10 mplelf ( 𝐹𝐵𝐹 : ( ℕ0m 1o ) ⟶ 𝐾 )