Description: Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fval.a | |- A = ( coe1 ` F ) |
|
| coe1f.b | |- B = ( Base ` P ) |
||
| coe1f.p | |- P = ( Poly1 ` R ) |
||
| coe1fval2.g | |- G = ( y e. NN0 |-> ( 1o X. { y } ) ) |
||
| Assertion | coe1fval2 | |- ( F e. B -> A = ( F o. G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | |- A = ( coe1 ` F ) |
|
| 2 | coe1f.b | |- B = ( Base ` P ) |
|
| 3 | coe1f.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1fval2.g | |- G = ( y e. NN0 |-> ( 1o X. { y } ) ) |
|
| 5 | 3 2 | ply1bascl | |- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
| 6 | eqid | |- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
|
| 7 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 8 | 1 6 7 4 | coe1fval3 | |- ( F e. ( Base ` ( PwSer1 ` R ) ) -> A = ( F o. G ) ) |
| 9 | 5 8 | syl | |- ( F e. B -> A = ( F o. G ) ) |