Metamath Proof Explorer


Theorem coe1tm

Description: Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses coe1tm.z 0˙=0R
coe1tm.k K=BaseR
coe1tm.p P=Poly1R
coe1tm.x X=var1R
coe1tm.m ·˙=P
coe1tm.n N=mulGrpP
coe1tm.e ×˙=N
Assertion coe1tm RRingCKD0coe1C·˙D×˙X=x0ifx=DC0˙

Proof

Step Hyp Ref Expression
1 coe1tm.z 0˙=0R
2 coe1tm.k K=BaseR
3 coe1tm.p P=Poly1R
4 coe1tm.x X=var1R
5 coe1tm.m ·˙=P
6 coe1tm.n N=mulGrpP
7 coe1tm.e ×˙=N
8 eqid BaseP=BaseP
9 2 3 4 5 6 7 8 ply1tmcl RRingCKD0C·˙D×˙XBaseP
10 eqid coe1C·˙D×˙X=coe1C·˙D×˙X
11 eqid x01𝑜×x=x01𝑜×x
12 10 8 3 11 coe1fval2 C·˙D×˙XBasePcoe1C·˙D×˙X=C·˙D×˙Xx01𝑜×x
13 9 12 syl RRingCKD0coe1C·˙D×˙X=C·˙D×˙Xx01𝑜×x
14 fconst6g x01𝑜×x:1𝑜0
15 nn0ex 0V
16 1oex 1𝑜V
17 15 16 elmap 1𝑜×x01𝑜1𝑜×x:1𝑜0
18 14 17 sylibr x01𝑜×x01𝑜
19 18 adantl RRingCKD0x01𝑜×x01𝑜
20 eqidd RRingCKD0x01𝑜×x=x01𝑜×x
21 eqid mulGrp1𝑜mPolyR=mulGrp1𝑜mPolyR
22 6 8 mgpbas BaseP=BaseN
23 22 a1i RRingBaseP=BaseN
24 eqid mulGrp1𝑜mPolyR=mulGrp1𝑜mPolyR
25 eqid PwSer1R=PwSer1R
26 3 25 8 ply1bas BaseP=Base1𝑜mPolyR
27 24 26 mgpbas BaseP=BasemulGrp1𝑜mPolyR
28 27 a1i RRingBaseP=BasemulGrp1𝑜mPolyR
29 ssv BasePV
30 29 a1i RRingBasePV
31 ovexd RRingxVyVx+NyV
32 eqid P=P
33 6 32 mgpplusg P=+N
34 eqid 1𝑜mPolyR=1𝑜mPolyR
35 3 34 32 ply1mulr P=1𝑜mPolyR
36 24 35 mgpplusg P=+mulGrp1𝑜mPolyR
37 33 36 eqtr3i +N=+mulGrp1𝑜mPolyR
38 37 a1i RRing+N=+mulGrp1𝑜mPolyR
39 38 oveqdr RRingxVyVx+Ny=x+mulGrp1𝑜mPolyRy
40 7 21 23 28 30 31 39 mulgpropd RRing×˙=mulGrp1𝑜mPolyR
41 40 3ad2ant1 RRingCKD0×˙=mulGrp1𝑜mPolyR
42 eqidd RRingCKD0D=D
43 4 vr1val X=1𝑜mVarR
44 43 a1i RRingCKD0X=1𝑜mVarR
45 41 42 44 oveq123d RRingCKD0D×˙X=DmulGrp1𝑜mPolyR1𝑜mVarR
46 45 oveq2d RRingCKD0C·˙D×˙X=C·˙DmulGrp1𝑜mPolyR1𝑜mVarR
47 psr1baslem 01𝑜=a01𝑜|a-1Fin
48 eqid 1R=1R
49 1on 1𝑜On
50 49 a1i RRingCKD01𝑜On
51 eqid 1𝑜mVarR=1𝑜mVarR
52 simp1 RRingCKD0RRing
53 0lt1o 1𝑜
54 53 a1i RRingCKD01𝑜
55 simp3 RRingCKD0D0
56 34 47 1 48 50 24 21 51 52 54 55 mplcoe3 RRingCKD0y01𝑜ify=b1𝑜ifb=D01R0˙=DmulGrp1𝑜mPolyR1𝑜mVarR
57 56 oveq2d RRingCKD0C·˙y01𝑜ify=b1𝑜ifb=D01R0˙=C·˙DmulGrp1𝑜mPolyR1𝑜mVarR
58 3 34 5 ply1vsca ·˙=1𝑜mPolyR
59 elsni bb=
60 df1o2 1𝑜=
61 59 60 eleq2s b1𝑜b=
62 61 iftrued b1𝑜ifb=D0=D
63 62 adantl RRingCKD0b1𝑜ifb=D0=D
64 63 mpteq2dva RRingCKD0b1𝑜ifb=D0=b1𝑜D
65 fconstmpt 1𝑜×D=b1𝑜D
66 64 65 eqtr4di RRingCKD0b1𝑜ifb=D0=1𝑜×D
67 fconst6g D01𝑜×D:1𝑜0
68 15 16 elmap 1𝑜×D01𝑜1𝑜×D:1𝑜0
69 67 68 sylibr D01𝑜×D01𝑜
70 69 3ad2ant3 RRingCKD01𝑜×D01𝑜
71 66 70 eqeltrd RRingCKD0b1𝑜ifb=D001𝑜
72 simp2 RRingCKD0CK
73 34 58 47 48 1 2 50 52 71 72 mplmon2 RRingCKD0C·˙y01𝑜ify=b1𝑜ifb=D01R0˙=y01𝑜ify=b1𝑜ifb=D0C0˙
74 46 57 73 3eqtr2d RRingCKD0C·˙D×˙X=y01𝑜ify=b1𝑜ifb=D0C0˙
75 eqeq1 y=1𝑜×xy=b1𝑜ifb=D01𝑜×x=b1𝑜ifb=D0
76 75 ifbid y=1𝑜×xify=b1𝑜ifb=D0C0˙=if1𝑜×x=b1𝑜ifb=D0C0˙
77 19 20 74 76 fmptco RRingCKD0C·˙D×˙Xx01𝑜×x=x0if1𝑜×x=b1𝑜ifb=D0C0˙
78 66 adantr RRingCKD0x0b1𝑜ifb=D0=1𝑜×D
79 78 eqeq2d RRingCKD0x01𝑜×x=b1𝑜ifb=D01𝑜×x=1𝑜×D
80 fveq1 1𝑜×x=1𝑜×D1𝑜×x=1𝑜×D
81 vex xV
82 81 fvconst2 1𝑜1𝑜×x=x
83 53 82 mp1i RRingCKD0x01𝑜×x=x
84 simpl3 RRingCKD0x0D0
85 fvconst2g D01𝑜1𝑜×D=D
86 84 53 85 sylancl RRingCKD0x01𝑜×D=D
87 83 86 eqeq12d RRingCKD0x01𝑜×x=1𝑜×Dx=D
88 80 87 imbitrid RRingCKD0x01𝑜×x=1𝑜×Dx=D
89 sneq x=Dx=D
90 89 xpeq2d x=D1𝑜×x=1𝑜×D
91 88 90 impbid1 RRingCKD0x01𝑜×x=1𝑜×Dx=D
92 79 91 bitrd RRingCKD0x01𝑜×x=b1𝑜ifb=D0x=D
93 92 ifbid RRingCKD0x0if1𝑜×x=b1𝑜ifb=D0C0˙=ifx=DC0˙
94 93 mpteq2dva RRingCKD0x0if1𝑜×x=b1𝑜ifb=D0C0˙=x0ifx=DC0˙
95 13 77 94 3eqtrd RRingCKD0coe1C·˙D×˙X=x0ifx=DC0˙