| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1plusg.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1plusg.s |
⊢ 𝑆 = ( 1o mPoly 𝑅 ) |
| 3 |
|
ply1mulr.n |
⊢ · = ( .r ‘ 𝑌 ) |
| 4 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
| 5 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 6 |
2 4 5
|
mplmulr |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 9 |
7 4 8
|
psr1mulr |
⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 10 |
|
fvex |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V |
| 11 |
1 7
|
ply1val |
⊢ 𝑌 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 12 |
11 8
|
ressmulr |
⊢ ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V → ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ 𝑌 ) ) |
| 13 |
10 12
|
ax-mp |
⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ 𝑌 ) |
| 14 |
6 9 13
|
3eqtr2i |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑌 ) |
| 15 |
3 14
|
eqtr4i |
⊢ · = ( .r ‘ 𝑆 ) |