| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1plusg.y |
|- Y = ( Poly1 ` R ) |
| 2 |
|
ply1plusg.s |
|- S = ( 1o mPoly R ) |
| 3 |
|
ply1mulr.n |
|- .x. = ( .r ` Y ) |
| 4 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
| 5 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 6 |
2 4 5
|
mplmulr |
|- ( .r ` S ) = ( .r ` ( 1o mPwSer R ) ) |
| 7 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
| 8 |
|
eqid |
|- ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( PwSer1 ` R ) ) |
| 9 |
7 4 8
|
psr1mulr |
|- ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( 1o mPwSer R ) ) |
| 10 |
|
fvex |
|- ( Base ` ( 1o mPoly R ) ) e. _V |
| 11 |
1 7
|
ply1val |
|- Y = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 12 |
11 8
|
ressmulr |
|- ( ( Base ` ( 1o mPoly R ) ) e. _V -> ( .r ` ( PwSer1 ` R ) ) = ( .r ` Y ) ) |
| 13 |
10 12
|
ax-mp |
|- ( .r ` ( PwSer1 ` R ) ) = ( .r ` Y ) |
| 14 |
6 9 13
|
3eqtr2i |
|- ( .r ` S ) = ( .r ` Y ) |
| 15 |
3 14
|
eqtr4i |
|- .x. = ( .r ` S ) |