Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressply1.s | |- S = ( Poly1 ` R ) |
|
ressply1.h | |- H = ( R |`s T ) |
||
ressply1.u | |- U = ( Poly1 ` H ) |
||
ressply1.b | |- B = ( Base ` U ) |
||
ressply1.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
ressply1bas2.w | |- W = ( PwSer1 ` H ) |
||
ressply1bas2.c | |- C = ( Base ` W ) |
||
ressply1bas2.k | |- K = ( Base ` S ) |
||
Assertion | ressply1bas2 | |- ( ph -> B = ( C i^i K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply1.s | |- S = ( Poly1 ` R ) |
|
2 | ressply1.h | |- H = ( R |`s T ) |
|
3 | ressply1.u | |- U = ( Poly1 ` H ) |
|
4 | ressply1.b | |- B = ( Base ` U ) |
|
5 | ressply1.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
6 | ressply1bas2.w | |- W = ( PwSer1 ` H ) |
|
7 | ressply1bas2.c | |- C = ( Base ` W ) |
|
8 | ressply1bas2.k | |- K = ( Base ` S ) |
|
9 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
10 | eqid | |- ( 1o mPoly H ) = ( 1o mPoly H ) |
|
11 | 3 6 4 | ply1bas | |- B = ( Base ` ( 1o mPoly H ) ) |
12 | 1on | |- 1o e. On |
|
13 | 12 | a1i | |- ( ph -> 1o e. On ) |
14 | eqid | |- ( 1o mPwSer H ) = ( 1o mPwSer H ) |
|
15 | 6 7 14 | psr1bas2 | |- C = ( Base ` ( 1o mPwSer H ) ) |
16 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
17 | 1 16 8 | ply1bas | |- K = ( Base ` ( 1o mPoly R ) ) |
18 | 9 2 10 11 13 5 14 15 17 | ressmplbas2 | |- ( ph -> B = ( C i^i K ) ) |