Metamath Proof Explorer


Theorem ressply1bas2

Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressply1.s
|- S = ( Poly1 ` R )
ressply1.h
|- H = ( R |`s T )
ressply1.u
|- U = ( Poly1 ` H )
ressply1.b
|- B = ( Base ` U )
ressply1.2
|- ( ph -> T e. ( SubRing ` R ) )
ressply1bas2.w
|- W = ( PwSer1 ` H )
ressply1bas2.c
|- C = ( Base ` W )
ressply1bas2.k
|- K = ( Base ` S )
Assertion ressply1bas2
|- ( ph -> B = ( C i^i K ) )

Proof

Step Hyp Ref Expression
1 ressply1.s
 |-  S = ( Poly1 ` R )
2 ressply1.h
 |-  H = ( R |`s T )
3 ressply1.u
 |-  U = ( Poly1 ` H )
4 ressply1.b
 |-  B = ( Base ` U )
5 ressply1.2
 |-  ( ph -> T e. ( SubRing ` R ) )
6 ressply1bas2.w
 |-  W = ( PwSer1 ` H )
7 ressply1bas2.c
 |-  C = ( Base ` W )
8 ressply1bas2.k
 |-  K = ( Base ` S )
9 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
10 eqid
 |-  ( 1o mPoly H ) = ( 1o mPoly H )
11 3 6 4 ply1bas
 |-  B = ( Base ` ( 1o mPoly H ) )
12 1on
 |-  1o e. On
13 12 a1i
 |-  ( ph -> 1o e. On )
14 eqid
 |-  ( 1o mPwSer H ) = ( 1o mPwSer H )
15 6 7 14 psr1bas2
 |-  C = ( Base ` ( 1o mPwSer H ) )
16 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
17 1 16 8 ply1bas
 |-  K = ( Base ` ( 1o mPoly R ) )
18 9 2 10 11 13 5 14 15 17 ressmplbas2
 |-  ( ph -> B = ( C i^i K ) )