Metamath Proof Explorer


Theorem ressply1bas2

Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressply1.s S=Poly1R
ressply1.h H=R𝑠T
ressply1.u U=Poly1H
ressply1.b B=BaseU
ressply1.2 φTSubRingR
ressply1bas2.w W=PwSer1H
ressply1bas2.c C=BaseW
ressply1bas2.k K=BaseS
Assertion ressply1bas2 φB=CK

Proof

Step Hyp Ref Expression
1 ressply1.s S=Poly1R
2 ressply1.h H=R𝑠T
3 ressply1.u U=Poly1H
4 ressply1.b B=BaseU
5 ressply1.2 φTSubRingR
6 ressply1bas2.w W=PwSer1H
7 ressply1bas2.c C=BaseW
8 ressply1bas2.k K=BaseS
9 eqid 1𝑜mPolyR=1𝑜mPolyR
10 eqid 1𝑜mPolyH=1𝑜mPolyH
11 3 6 4 ply1bas B=Base1𝑜mPolyH
12 1on 1𝑜On
13 12 a1i φ1𝑜On
14 eqid 1𝑜mPwSerH=1𝑜mPwSerH
15 6 7 14 psr1bas2 C=Base1𝑜mPwSerH
16 eqid PwSer1R=PwSer1R
17 1 16 8 ply1bas K=Base1𝑜mPolyR
18 9 2 10 11 13 5 14 15 17 ressmplbas2 φB=CK