| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressmpl.s |
|- S = ( I mPoly R ) |
| 2 |
|
ressmpl.h |
|- H = ( R |`s T ) |
| 3 |
|
ressmpl.u |
|- U = ( I mPoly H ) |
| 4 |
|
ressmpl.b |
|- B = ( Base ` U ) |
| 5 |
|
ressmpl.1 |
|- ( ph -> I e. V ) |
| 6 |
|
ressmpl.2 |
|- ( ph -> T e. ( SubRing ` R ) ) |
| 7 |
|
ressmplbas2.w |
|- W = ( I mPwSer H ) |
| 8 |
|
ressmplbas2.c |
|- C = ( Base ` W ) |
| 9 |
|
ressmplbas2.k |
|- K = ( Base ` S ) |
| 10 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 11 |
10 2 7 8
|
subrgpsr |
|- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> C e. ( SubRing ` ( I mPwSer R ) ) ) |
| 12 |
5 6 11
|
syl2anc |
|- ( ph -> C e. ( SubRing ` ( I mPwSer R ) ) ) |
| 13 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 14 |
13
|
subrgss |
|- ( C e. ( SubRing ` ( I mPwSer R ) ) -> C C_ ( Base ` ( I mPwSer R ) ) ) |
| 15 |
12 14
|
syl |
|- ( ph -> C C_ ( Base ` ( I mPwSer R ) ) ) |
| 16 |
|
dfss2 |
|- ( C C_ ( Base ` ( I mPwSer R ) ) <-> ( C i^i ( Base ` ( I mPwSer R ) ) ) = C ) |
| 17 |
15 16
|
sylib |
|- ( ph -> ( C i^i ( Base ` ( I mPwSer R ) ) ) = C ) |
| 18 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 19 |
2 18
|
subrg0 |
|- ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) |
| 20 |
6 19
|
syl |
|- ( ph -> ( 0g ` R ) = ( 0g ` H ) ) |
| 21 |
20
|
breq2d |
|- ( ph -> ( f finSupp ( 0g ` R ) <-> f finSupp ( 0g ` H ) ) ) |
| 22 |
21
|
abbidv |
|- ( ph -> { f | f finSupp ( 0g ` R ) } = { f | f finSupp ( 0g ` H ) } ) |
| 23 |
17 22
|
ineq12d |
|- ( ph -> ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) = ( C i^i { f | f finSupp ( 0g ` H ) } ) ) |
| 24 |
23
|
eqcomd |
|- ( ph -> ( C i^i { f | f finSupp ( 0g ` H ) } ) = ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) ) |
| 25 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 26 |
3 7 8 25 4
|
mplbas |
|- B = { f e. C | f finSupp ( 0g ` H ) } |
| 27 |
|
dfrab3 |
|- { f e. C | f finSupp ( 0g ` H ) } = ( C i^i { f | f finSupp ( 0g ` H ) } ) |
| 28 |
26 27
|
eqtri |
|- B = ( C i^i { f | f finSupp ( 0g ` H ) } ) |
| 29 |
1 10 13 18 9
|
mplbas |
|- K = { f e. ( Base ` ( I mPwSer R ) ) | f finSupp ( 0g ` R ) } |
| 30 |
|
dfrab3 |
|- { f e. ( Base ` ( I mPwSer R ) ) | f finSupp ( 0g ` R ) } = ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) |
| 31 |
29 30
|
eqtri |
|- K = ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) |
| 32 |
31
|
ineq2i |
|- ( C i^i K ) = ( C i^i ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) ) |
| 33 |
|
inass |
|- ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) = ( C i^i ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) ) |
| 34 |
32 33
|
eqtr4i |
|- ( C i^i K ) = ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) |
| 35 |
24 28 34
|
3eqtr4g |
|- ( ph -> B = ( C i^i K ) ) |