| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmpl.s |  |-  S = ( I mPoly R ) | 
						
							| 2 |  | ressmpl.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | ressmpl.u |  |-  U = ( I mPoly H ) | 
						
							| 4 |  | ressmpl.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | ressmpl.1 |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | ressmpl.2 |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | ressmpl.p |  |-  P = ( S |`s B ) | 
						
							| 8 |  | eqid |  |-  ( I mPwSer H ) = ( I mPwSer H ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 11 | 1 2 3 4 5 6 8 9 10 | ressmplbas2 |  |-  ( ph -> B = ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) ) | 
						
							| 12 |  | inss2 |  |-  ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) C_ ( Base ` S ) | 
						
							| 13 | 11 12 | eqsstrdi |  |-  ( ph -> B C_ ( Base ` S ) ) | 
						
							| 14 | 7 10 | ressbas2 |  |-  ( B C_ ( Base ` S ) -> B = ( Base ` P ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> B = ( Base ` P ) ) |