Metamath Proof Explorer


Theorem ressmplbas

Description: A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressmpl.s S = I mPoly R
ressmpl.h H = R 𝑠 T
ressmpl.u U = I mPoly H
ressmpl.b B = Base U
ressmpl.1 φ I V
ressmpl.2 φ T SubRing R
ressmpl.p P = S 𝑠 B
Assertion ressmplbas φ B = Base P

Proof

Step Hyp Ref Expression
1 ressmpl.s S = I mPoly R
2 ressmpl.h H = R 𝑠 T
3 ressmpl.u U = I mPoly H
4 ressmpl.b B = Base U
5 ressmpl.1 φ I V
6 ressmpl.2 φ T SubRing R
7 ressmpl.p P = S 𝑠 B
8 eqid I mPwSer H = I mPwSer H
9 eqid Base I mPwSer H = Base I mPwSer H
10 eqid Base S = Base S
11 1 2 3 4 5 6 8 9 10 ressmplbas2 φ B = Base I mPwSer H Base S
12 inss2 Base I mPwSer H Base S Base S
13 11 12 eqsstrdi φ B Base S
14 7 10 ressbas2 B Base S B = Base P
15 13 14 syl φ B = Base P