| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgpsr.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | subrgpsr.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | subrgpsr.u |  |-  U = ( I mPwSer H ) | 
						
							| 4 |  | subrgpsr.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | simpl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> I e. V ) | 
						
							| 6 |  | subrgrcl |  |-  ( T e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 7 | 6 | adantl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> R e. Ring ) | 
						
							| 8 | 1 5 7 | psrring |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> S e. Ring ) | 
						
							| 9 | 2 | subrgring |  |-  ( T e. ( SubRing ` R ) -> H e. Ring ) | 
						
							| 10 | 9 | adantl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> H e. Ring ) | 
						
							| 11 | 3 5 10 | psrring |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> U e. Ring ) | 
						
							| 12 | 4 | a1i |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B = ( Base ` U ) ) | 
						
							| 13 |  | eqid |  |-  ( S |`s B ) = ( S |`s B ) | 
						
							| 14 |  | simpr |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> T e. ( SubRing ` R ) ) | 
						
							| 15 | 1 2 3 4 13 14 | resspsrbas |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B = ( Base ` ( S |`s B ) ) ) | 
						
							| 16 | 1 2 3 4 13 14 | resspsradd |  |-  ( ( ( I e. V /\ T e. ( SubRing ` R ) ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` U ) y ) = ( x ( +g ` ( S |`s B ) ) y ) ) | 
						
							| 17 | 1 2 3 4 13 14 | resspsrmul |  |-  ( ( ( I e. V /\ T e. ( SubRing ` R ) ) /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` U ) y ) = ( x ( .r ` ( S |`s B ) ) y ) ) | 
						
							| 18 | 12 15 16 17 | ringpropd |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( U e. Ring <-> ( S |`s B ) e. Ring ) ) | 
						
							| 19 | 11 18 | mpbid |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( S |`s B ) e. Ring ) | 
						
							| 20 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 21 | 13 20 | ressbasss |  |-  ( Base ` ( S |`s B ) ) C_ ( Base ` S ) | 
						
							| 22 | 15 21 | eqsstrdi |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B C_ ( Base ` S ) ) | 
						
							| 23 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 24 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 25 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 26 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 27 | 1 5 7 23 24 25 26 | psr1 |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 28 | 25 | subrg1cl |  |-  ( T e. ( SubRing ` R ) -> ( 1r ` R ) e. T ) | 
						
							| 29 |  | subrgsubg |  |-  ( T e. ( SubRing ` R ) -> T e. ( SubGrp ` R ) ) | 
						
							| 30 | 24 | subg0cl |  |-  ( T e. ( SubGrp ` R ) -> ( 0g ` R ) e. T ) | 
						
							| 31 | 29 30 | syl |  |-  ( T e. ( SubRing ` R ) -> ( 0g ` R ) e. T ) | 
						
							| 32 | 28 31 | ifcld |  |-  ( T e. ( SubRing ` R ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. T ) | 
						
							| 33 | 32 | adantl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. T ) | 
						
							| 34 | 2 | subrgbas |  |-  ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> T = ( Base ` H ) ) | 
						
							| 36 | 33 35 | eleqtrd |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` H ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( I e. V /\ T e. ( SubRing ` R ) ) /\ x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` H ) ) | 
						
							| 38 | 27 37 | fmpt3d |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) | 
						
							| 39 |  | fvex |  |-  ( Base ` H ) e. _V | 
						
							| 40 |  | ovex |  |-  ( NN0 ^m I ) e. _V | 
						
							| 41 | 40 | rabex |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V | 
						
							| 42 | 39 41 | elmap |  |-  ( ( 1r ` S ) e. ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) <-> ( 1r ` S ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) | 
						
							| 43 | 38 42 | sylibr |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) e. ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 44 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 45 | 3 44 23 4 5 | psrbas |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B = ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 46 | 43 45 | eleqtrrd |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) e. B ) | 
						
							| 47 | 22 46 | jca |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) | 
						
							| 48 | 20 26 | issubrg |  |-  ( B e. ( SubRing ` S ) <-> ( ( S e. Ring /\ ( S |`s B ) e. Ring ) /\ ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) ) | 
						
							| 49 | 8 19 47 48 | syl21anbrc |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` S ) ) |