| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgpsr.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
subrgpsr.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
subrgpsr.u |
⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) |
| 4 |
|
subrgpsr.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐼 ∈ 𝑉 ) |
| 6 |
|
subrgrcl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 8 |
1 5 7
|
psrring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 9 |
2
|
subrgring |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐻 ∈ Ring ) |
| 11 |
3 5 10
|
psrring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑈 ∈ Ring ) |
| 12 |
4
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 13 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
| 14 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 15 |
1 2 3 4 13 14
|
resspsrbas |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 16 |
1 2 3 4 13 14
|
resspsradd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑦 ) ) |
| 17 |
1 2 3 4 13 14
|
resspsrmul |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑦 ) ) |
| 18 |
12 15 16 17
|
ringpropd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑈 ∈ Ring ↔ ( 𝑆 ↾s 𝐵 ) ∈ Ring ) ) |
| 19 |
11 18
|
mpbid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 21 |
13 20
|
ressbasss |
⊢ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ⊆ ( Base ‘ 𝑆 ) |
| 22 |
15 21
|
eqsstrdi |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 23 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 26 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 27 |
1 5 7 23 24 25 26
|
psr1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 28 |
25
|
subrg1cl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑇 ) |
| 29 |
|
subrgsubg |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 30 |
24
|
subg0cl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑇 ) |
| 31 |
29 30
|
syl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑇 ) |
| 32 |
28 31
|
ifcld |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ 𝑇 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ 𝑇 ) |
| 34 |
2
|
subrgbas |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 36 |
33 35
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 38 |
27 37
|
fmpt3d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 39 |
|
fvex |
⊢ ( Base ‘ 𝐻 ) ∈ V |
| 40 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 41 |
40
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 42 |
39 41
|
elmap |
⊢ ( ( 1r ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ↔ ( 1r ‘ 𝑆 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 43 |
38 42
|
sylibr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 44 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 45 |
3 44 23 4 5
|
psrbas |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 46 |
43 45
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 47 |
22 46
|
jca |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) |
| 48 |
20 26
|
issubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( ( 𝑆 ∈ Ring ∧ ( 𝑆 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) ) |
| 49 |
8 19 47 48
|
syl21anbrc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |