| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resspsr.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
resspsr.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
resspsr.u |
⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) |
| 4 |
|
resspsr.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
resspsr.p |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
| 6 |
|
resspsr.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 11 |
3 4 7 8 9 10
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝐻 ) 𝑌 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 15 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 16 |
2
|
subrgbas |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 19 |
18
|
subrgss |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 20 |
6 19
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 21 |
17 20
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 22 |
|
mapss |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 23 |
15 21 22
|
sylancr |
⊢ ( 𝜑 → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 26 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 27 |
|
reldmpsr |
⊢ Rel dom mPwSer |
| 28 |
27 3 4
|
elbasov |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝐻 ∈ V ) ) |
| 29 |
28
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ∈ V ∧ 𝐻 ∈ V ) ) |
| 30 |
29
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐼 ∈ V ) |
| 31 |
3 25 26 4 30
|
psrbas |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐵 = ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 32 |
1 18 26 12 30
|
psrbas |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( Base ‘ 𝑆 ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 33 |
24 31 32
|
3sstr4d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 34 |
33 9
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 35 |
33 10
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 36 |
1 12 13 14 34 35
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) ) |
| 37 |
2 13
|
ressplusg |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐻 ) ) |
| 38 |
6 37
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐻 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐻 ) ) |
| 40 |
39
|
ofeqd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ∘f ( +g ‘ 𝑅 ) = ∘f ( +g ‘ 𝐻 ) ) |
| 41 |
40
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝐻 ) 𝑌 ) ) |
| 42 |
36 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝐻 ) 𝑌 ) ) |
| 43 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 44 |
5 14
|
ressplusg |
⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) ) |
| 45 |
43 44
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) ) |
| 46 |
45
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |
| 47 |
11 42 46
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |