Step |
Hyp |
Ref |
Expression |
1 |
|
resspsr.s |
|
2 |
|
resspsr.h |
|
3 |
|
resspsr.u |
|
4 |
|
resspsr.b |
|
5 |
|
resspsr.p |
|
6 |
|
resspsr.2 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
simprl |
|
10 |
|
simprr |
|
11 |
3 4 7 8 9 10
|
psradd |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
fvex |
|
16 |
2
|
subrgbas |
|
17 |
6 16
|
syl |
|
18 |
|
eqid |
|
19 |
18
|
subrgss |
|
20 |
6 19
|
syl |
|
21 |
17 20
|
eqsstrrd |
|
22 |
|
mapss |
|
23 |
15 21 22
|
sylancr |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
reldmpsr |
|
28 |
27 3 4
|
elbasov |
|
29 |
28
|
ad2antrl |
|
30 |
29
|
simpld |
|
31 |
3 25 26 4 30
|
psrbas |
|
32 |
1 18 26 12 30
|
psrbas |
|
33 |
24 31 32
|
3sstr4d |
|
34 |
33 9
|
sseldd |
|
35 |
33 10
|
sseldd |
|
36 |
1 12 13 14 34 35
|
psradd |
|
37 |
2 13
|
ressplusg |
|
38 |
6 37
|
syl |
|
39 |
38
|
adantr |
|
40 |
|
ofeq |
|
41 |
39 40
|
syl |
|
42 |
41
|
oveqd |
|
43 |
36 42
|
eqtrd |
|
44 |
4
|
fvexi |
|
45 |
5 14
|
ressplusg |
|
46 |
44 45
|
mp1i |
|
47 |
46
|
oveqd |
|
48 |
11 43 47
|
3eqtr2d |
|