| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resspsr.s |
|
| 2 |
|
resspsr.h |
|
| 3 |
|
resspsr.u |
|
| 4 |
|
resspsr.b |
|
| 5 |
|
resspsr.p |
|
| 6 |
|
resspsr.2 |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
simprl |
|
| 10 |
|
simprr |
|
| 11 |
3 4 7 8 9 10
|
psradd |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
fvex |
|
| 16 |
2
|
subrgbas |
|
| 17 |
6 16
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
18
|
subrgss |
|
| 20 |
6 19
|
syl |
|
| 21 |
17 20
|
eqsstrrd |
|
| 22 |
|
mapss |
|
| 23 |
15 21 22
|
sylancr |
|
| 24 |
23
|
adantr |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
|
reldmpsr |
|
| 28 |
27 3 4
|
elbasov |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
29
|
simpld |
|
| 31 |
3 25 26 4 30
|
psrbas |
|
| 32 |
1 18 26 12 30
|
psrbas |
|
| 33 |
24 31 32
|
3sstr4d |
|
| 34 |
33 9
|
sseldd |
|
| 35 |
33 10
|
sseldd |
|
| 36 |
1 12 13 14 34 35
|
psradd |
|
| 37 |
2 13
|
ressplusg |
|
| 38 |
6 37
|
syl |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
ofeqd |
|
| 41 |
40
|
oveqd |
|
| 42 |
36 41
|
eqtrd |
|
| 43 |
4
|
fvexi |
|
| 44 |
5 14
|
ressplusg |
|
| 45 |
43 44
|
mp1i |
|
| 46 |
45
|
oveqd |
|
| 47 |
11 42 46
|
3eqtr2d |
|