| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resspsr.s |
|
| 2 |
|
resspsr.h |
|
| 3 |
|
resspsr.u |
|
| 4 |
|
resspsr.b |
|
| 5 |
|
resspsr.p |
|
| 6 |
|
resspsr.2 |
|
| 7 |
|
eqid |
|
| 8 |
7
|
psrbaglefi |
|
| 9 |
8
|
adantl |
|
| 10 |
|
subrgsubg |
|
| 11 |
6 10
|
syl |
|
| 12 |
|
subgsubm |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
6
|
ad3antrrr |
|
| 16 |
|
eqid |
|
| 17 |
|
simprl |
|
| 18 |
3 16 7 4 17
|
psrelbas |
|
| 19 |
18
|
adantr |
|
| 20 |
|
elrabi |
|
| 21 |
|
ffvelcdm |
|
| 22 |
19 20 21
|
syl2an |
|
| 23 |
2
|
subrgbas |
|
| 24 |
15 23
|
syl |
|
| 25 |
22 24
|
eleqtrrd |
|
| 26 |
|
simprr |
|
| 27 |
3 16 7 4 26
|
psrelbas |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
ssrab2 |
|
| 30 |
|
simplr |
|
| 31 |
|
simpr |
|
| 32 |
|
eqid |
|
| 33 |
7 32
|
psrbagconcl |
|
| 34 |
30 31 33
|
syl2anc |
|
| 35 |
29 34
|
sselid |
|
| 36 |
28 35
|
ffvelcdmd |
|
| 37 |
36 24
|
eleqtrrd |
|
| 38 |
|
eqid |
|
| 39 |
38
|
subrgmcl |
|
| 40 |
15 25 37 39
|
syl3anc |
|
| 41 |
40
|
fmpttd |
|
| 42 |
9 14 41 2
|
gsumsubm |
|
| 43 |
2 38
|
ressmulr |
|
| 44 |
6 43
|
syl |
|
| 45 |
44
|
ad3antrrr |
|
| 46 |
45
|
oveqd |
|
| 47 |
46
|
mpteq2dva |
|
| 48 |
47
|
oveq2d |
|
| 49 |
42 48
|
eqtrd |
|
| 50 |
49
|
mpteq2dva |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
|
fvex |
|
| 54 |
6 23
|
syl |
|
| 55 |
|
eqid |
|
| 56 |
55
|
subrgss |
|
| 57 |
6 56
|
syl |
|
| 58 |
54 57
|
eqsstrrd |
|
| 59 |
|
mapss |
|
| 60 |
53 58 59
|
sylancr |
|
| 61 |
60
|
adantr |
|
| 62 |
|
reldmpsr |
|
| 63 |
62 3 4
|
elbasov |
|
| 64 |
63
|
ad2antrl |
|
| 65 |
64
|
simpld |
|
| 66 |
3 16 7 4 65
|
psrbas |
|
| 67 |
1 55 7 51 65
|
psrbas |
|
| 68 |
61 66 67
|
3sstr4d |
|
| 69 |
68 17
|
sseldd |
|
| 70 |
68 26
|
sseldd |
|
| 71 |
1 51 38 52 7 69 70
|
psrmulfval |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
3 4 72 73 7 17 26
|
psrmulfval |
|
| 75 |
50 71 74
|
3eqtr4rd |
|
| 76 |
4
|
fvexi |
|
| 77 |
5 52
|
ressmulr |
|
| 78 |
76 77
|
mp1i |
|
| 79 |
78
|
oveqd |
|
| 80 |
75 79
|
eqtrd |
|