Step |
Hyp |
Ref |
Expression |
1 |
|
resspsr.s |
|
2 |
|
resspsr.h |
|
3 |
|
resspsr.u |
|
4 |
|
resspsr.b |
|
5 |
|
resspsr.p |
|
6 |
|
resspsr.2 |
|
7 |
|
eqid |
|
8 |
7
|
psrbaglefi |
|
9 |
8
|
adantl |
|
10 |
|
subrgsubg |
|
11 |
6 10
|
syl |
|
12 |
|
subgsubm |
|
13 |
11 12
|
syl |
|
14 |
13
|
ad2antrr |
|
15 |
6
|
ad3antrrr |
|
16 |
|
eqid |
|
17 |
|
simprl |
|
18 |
3 16 7 4 17
|
psrelbas |
|
19 |
18
|
adantr |
|
20 |
|
elrabi |
|
21 |
|
ffvelrn |
|
22 |
19 20 21
|
syl2an |
|
23 |
2
|
subrgbas |
|
24 |
15 23
|
syl |
|
25 |
22 24
|
eleqtrrd |
|
26 |
|
simprr |
|
27 |
3 16 7 4 26
|
psrelbas |
|
28 |
27
|
ad2antrr |
|
29 |
|
ssrab2 |
|
30 |
|
simplr |
|
31 |
|
simpr |
|
32 |
|
eqid |
|
33 |
7 32
|
psrbagconcl |
|
34 |
30 31 33
|
syl2anc |
|
35 |
29 34
|
sselid |
|
36 |
28 35
|
ffvelrnd |
|
37 |
36 24
|
eleqtrrd |
|
38 |
|
eqid |
|
39 |
38
|
subrgmcl |
|
40 |
15 25 37 39
|
syl3anc |
|
41 |
40
|
fmpttd |
|
42 |
9 14 41 2
|
gsumsubm |
|
43 |
2 38
|
ressmulr |
|
44 |
6 43
|
syl |
|
45 |
44
|
ad3antrrr |
|
46 |
45
|
oveqd |
|
47 |
46
|
mpteq2dva |
|
48 |
47
|
oveq2d |
|
49 |
42 48
|
eqtrd |
|
50 |
49
|
mpteq2dva |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
|
fvex |
|
54 |
6 23
|
syl |
|
55 |
|
eqid |
|
56 |
55
|
subrgss |
|
57 |
6 56
|
syl |
|
58 |
54 57
|
eqsstrrd |
|
59 |
|
mapss |
|
60 |
53 58 59
|
sylancr |
|
61 |
60
|
adantr |
|
62 |
|
reldmpsr |
|
63 |
62 3 4
|
elbasov |
|
64 |
63
|
ad2antrl |
|
65 |
64
|
simpld |
|
66 |
3 16 7 4 65
|
psrbas |
|
67 |
1 55 7 51 65
|
psrbas |
|
68 |
61 66 67
|
3sstr4d |
|
69 |
68 17
|
sseldd |
|
70 |
68 26
|
sseldd |
|
71 |
1 51 38 52 7 69 70
|
psrmulfval |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
3 4 72 73 7 17 26
|
psrmulfval |
|
75 |
50 71 74
|
3eqtr4rd |
|
76 |
4
|
fvexi |
|
77 |
5 52
|
ressmulr |
|
78 |
76 77
|
mp1i |
|
79 |
78
|
oveqd |
|
80 |
75 79
|
eqtrd |
|