Metamath Proof Explorer


Theorem psrmulfval

Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrmulr.s S=ImPwSerR
psrmulr.b B=BaseS
psrmulr.m ·˙=R
psrmulr.t ˙=S
psrmulr.d D=h0I|h-1Fin
psrmulfval.i φFB
psrmulfval.r φGB
Assertion psrmulfval φF˙G=kDRxyD|yfkFx·˙Gkfx

Proof

Step Hyp Ref Expression
1 psrmulr.s S=ImPwSerR
2 psrmulr.b B=BaseS
3 psrmulr.m ·˙=R
4 psrmulr.t ˙=S
5 psrmulr.d D=h0I|h-1Fin
6 psrmulfval.i φFB
7 psrmulfval.r φGB
8 fveq1 f=Ffx=Fx
9 fveq1 g=Ggkfx=Gkfx
10 8 9 oveqan12d f=Fg=Gfx·˙gkfx=Fx·˙Gkfx
11 10 mpteq2dv f=Fg=GxyD|yfkfx·˙gkfx=xyD|yfkFx·˙Gkfx
12 11 oveq2d f=Fg=GRxyD|yfkfx·˙gkfx=RxyD|yfkFx·˙Gkfx
13 12 mpteq2dv f=Fg=GkDRxyD|yfkfx·˙gkfx=kDRxyD|yfkFx·˙Gkfx
14 1 2 3 4 5 psrmulr ˙=fB,gBkDRxyD|yfkfx·˙gkfx
15 ovex 0IV
16 5 15 rabex2 DV
17 16 mptex kDRxyD|yfkFx·˙GkfxV
18 13 14 17 ovmpoa FBGBF˙G=kDRxyD|yfkFx·˙Gkfx
19 6 7 18 syl2anc φF˙G=kDRxyD|yfkFx·˙Gkfx