Metamath Proof Explorer


Theorem psrmulfval

Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrmulr.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrmulr.b 𝐵 = ( Base ‘ 𝑆 )
psrmulr.m · = ( .r𝑅 )
psrmulr.t = ( .r𝑆 )
psrmulr.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrmulfval.i ( 𝜑𝐹𝐵 )
psrmulfval.r ( 𝜑𝐺𝐵 )
Assertion psrmulfval ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 psrmulr.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrmulr.b 𝐵 = ( Base ‘ 𝑆 )
3 psrmulr.m · = ( .r𝑅 )
4 psrmulr.t = ( .r𝑆 )
5 psrmulr.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
6 psrmulfval.i ( 𝜑𝐹𝐵 )
7 psrmulfval.r ( 𝜑𝐺𝐵 )
8 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
9 fveq1 ( 𝑔 = 𝐺 → ( 𝑔 ‘ ( 𝑘f𝑥 ) ) = ( 𝐺 ‘ ( 𝑘f𝑥 ) ) )
10 8 9 oveqan12d ( ( 𝑓 = 𝐹𝑔 = 𝐺 ) → ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) = ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) )
11 10 mpteq2dv ( ( 𝑓 = 𝐹𝑔 = 𝐺 ) → ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) ) )
12 11 oveq2d ( ( 𝑓 = 𝐹𝑔 = 𝐺 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) ) ) )
13 12 mpteq2dv ( ( 𝑓 = 𝐹𝑔 = 𝐺 ) → ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) = ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
14 1 2 3 4 5 psrmulr = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
15 ovex ( ℕ0m 𝐼 ) ∈ V
16 5 15 rabex2 𝐷 ∈ V
17 16 mptex ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ∈ V
18 13 14 17 ovmpoa ( ( 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
19 6 7 18 syl2anc ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝐹𝑥 ) · ( 𝐺 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )