Step |
Hyp |
Ref |
Expression |
1 |
|
psrmulr.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrmulr.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psrmulr.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
psrmulr.t |
⊢ ∙ = ( .r ‘ 𝑆 ) |
5 |
|
psrmulr.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
psrmulfval.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
psrmulfval.r |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
8 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) |
10 |
8 9
|
oveqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
11 |
10
|
mpteq2dv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
13 |
12
|
mpteq2dv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
14 |
1 2 3 4 5
|
psrmulr |
⊢ ∙ = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
15 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
16 |
5 15
|
rabex2 |
⊢ 𝐷 ∈ V |
17 |
16
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ∈ V |
18 |
13 14 17
|
ovmpoa |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
19 |
6 7 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∙ 𝐺 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |