| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resspsr.s |
|
| 2 |
|
resspsr.h |
|
| 3 |
|
resspsr.u |
|
| 4 |
|
resspsr.b |
|
| 5 |
|
resspsr.p |
|
| 6 |
|
resspsr.2 |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
simprl |
|
| 12 |
6
|
adantr |
|
| 13 |
2
|
subrgbas |
|
| 14 |
12 13
|
syl |
|
| 15 |
11 14
|
eleqtrd |
|
| 16 |
|
simprr |
|
| 17 |
3 7 8 4 9 10 15 16
|
psrvsca |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
19
|
subrgss |
|
| 23 |
12 22
|
syl |
|
| 24 |
23 11
|
sseldd |
|
| 25 |
1 2 3 4 5 6
|
resspsrbas |
|
| 26 |
5 20
|
ressbasss |
|
| 27 |
25 26
|
eqsstrdi |
|
| 28 |
27
|
adantr |
|
| 29 |
28 16
|
sseldd |
|
| 30 |
1 18 19 20 21 10 24 29
|
psrvsca |
|
| 31 |
2 21
|
ressmulr |
|
| 32 |
|
ofeq |
|
| 33 |
12 31 32
|
3syl |
|
| 34 |
33
|
oveqd |
|
| 35 |
30 34
|
eqtrd |
|
| 36 |
4
|
fvexi |
|
| 37 |
5 18
|
ressvsca |
|
| 38 |
36 37
|
mp1i |
|
| 39 |
38
|
oveqd |
|
| 40 |
17 35 39
|
3eqtr2d |
|