Metamath Proof Explorer


Theorem resspsrvsca

Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses resspsr.s S=ImPwSerR
resspsr.h H=R𝑠T
resspsr.u U=ImPwSerH
resspsr.b B=BaseU
resspsr.p P=S𝑠B
resspsr.2 φTSubRingR
Assertion resspsrvsca φXTYBXUY=XPY

Proof

Step Hyp Ref Expression
1 resspsr.s S=ImPwSerR
2 resspsr.h H=R𝑠T
3 resspsr.u U=ImPwSerH
4 resspsr.b B=BaseU
5 resspsr.p P=S𝑠B
6 resspsr.2 φTSubRingR
7 eqid U=U
8 eqid BaseH=BaseH
9 eqid H=H
10 eqid f0I|f-1Fin=f0I|f-1Fin
11 simprl φXTYBXT
12 6 adantr φXTYBTSubRingR
13 2 subrgbas TSubRingRT=BaseH
14 12 13 syl φXTYBT=BaseH
15 11 14 eleqtrd φXTYBXBaseH
16 simprr φXTYBYB
17 3 7 8 4 9 10 15 16 psrvsca φXTYBXUY=f0I|f-1Fin×XHfY
18 eqid S=S
19 eqid BaseR=BaseR
20 eqid BaseS=BaseS
21 eqid R=R
22 19 subrgss TSubRingRTBaseR
23 12 22 syl φXTYBTBaseR
24 23 11 sseldd φXTYBXBaseR
25 1 2 3 4 5 6 resspsrbas φB=BaseP
26 5 20 ressbasss BasePBaseS
27 25 26 eqsstrdi φBBaseS
28 27 adantr φXTYBBBaseS
29 28 16 sseldd φXTYBYBaseS
30 1 18 19 20 21 10 24 29 psrvsca φXTYBXSY=f0I|f-1Fin×XRfY
31 2 21 ressmulr TSubRingRR=H
32 ofeq R=HfR=fH
33 12 31 32 3syl φXTYBfR=fH
34 33 oveqd φXTYBf0I|f-1Fin×XRfY=f0I|f-1Fin×XHfY
35 30 34 eqtrd φXTYBXSY=f0I|f-1Fin×XHfY
36 4 fvexi BV
37 5 18 ressvsca BVS=P
38 36 37 mp1i φXTYBS=P
39 38 oveqd φXTYBXSY=XPY
40 17 35 39 3eqtr2d φXTYBXUY=XPY