Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resspsr.s | |
|
resspsr.h | |
||
resspsr.u | |
||
resspsr.b | |
||
resspsr.p | |
||
resspsr.2 | |
||
Assertion | resspsrvsca | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resspsr.s | |
|
2 | resspsr.h | |
|
3 | resspsr.u | |
|
4 | resspsr.b | |
|
5 | resspsr.p | |
|
6 | resspsr.2 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | simprl | |
|
12 | 6 | adantr | |
13 | 2 | subrgbas | |
14 | 12 13 | syl | |
15 | 11 14 | eleqtrd | |
16 | simprr | |
|
17 | 3 7 8 4 9 10 15 16 | psrvsca | |
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 19 | subrgss | |
23 | 12 22 | syl | |
24 | 23 11 | sseldd | |
25 | 1 2 3 4 5 6 | resspsrbas | |
26 | 5 20 | ressbasss | |
27 | 25 26 | eqsstrdi | |
28 | 27 | adantr | |
29 | 28 16 | sseldd | |
30 | 1 18 19 20 21 10 24 29 | psrvsca | |
31 | 2 21 | ressmulr | |
32 | ofeq | |
|
33 | 12 31 32 | 3syl | |
34 | 33 | oveqd | |
35 | 30 34 | eqtrd | |
36 | 4 | fvexi | |
37 | 5 18 | ressvsca | |
38 | 36 37 | mp1i | |
39 | 38 | oveqd | |
40 | 17 35 39 | 3eqtr2d | |