Metamath Proof Explorer


Theorem resspsrbas

Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses resspsr.s S=ImPwSerR
resspsr.h H=R𝑠T
resspsr.u U=ImPwSerH
resspsr.b B=BaseU
resspsr.p P=S𝑠B
resspsr.2 φTSubRingR
Assertion resspsrbas φB=BaseP

Proof

Step Hyp Ref Expression
1 resspsr.s S=ImPwSerR
2 resspsr.h H=R𝑠T
3 resspsr.u U=ImPwSerH
4 resspsr.b B=BaseU
5 resspsr.p P=S𝑠B
6 resspsr.2 φTSubRingR
7 fvex BaseRV
8 2 subrgbas TSubRingRT=BaseH
9 6 8 syl φT=BaseH
10 eqid BaseR=BaseR
11 10 subrgss TSubRingRTBaseR
12 6 11 syl φTBaseR
13 9 12 eqsstrrd φBaseHBaseR
14 13 adantr φIVBaseHBaseR
15 mapss BaseRVBaseHBaseRBaseHf0I|f-1FinBaseRf0I|f-1Fin
16 7 14 15 sylancr φIVBaseHf0I|f-1FinBaseRf0I|f-1Fin
17 eqid BaseH=BaseH
18 eqid f0I|f-1Fin=f0I|f-1Fin
19 simpr φIVIV
20 3 17 18 4 19 psrbas φIVB=BaseHf0I|f-1Fin
21 eqid BaseS=BaseS
22 1 10 18 21 19 psrbas φIVBaseS=BaseRf0I|f-1Fin
23 16 20 22 3sstr4d φIVBBaseS
24 reldmpsr ReldommPwSer
25 24 ovprc1 ¬IVImPwSerH=
26 3 25 eqtrid ¬IVU=
27 26 adantl φ¬IVU=
28 27 fveq2d φ¬IVBaseU=Base
29 base0 =Base
30 28 4 29 3eqtr4g φ¬IVB=
31 0ss BaseS
32 30 31 eqsstrdi φ¬IVBBaseS
33 23 32 pm2.61dan φBBaseS
34 5 21 ressbas2 BBaseSB=BaseP
35 33 34 syl φB=BaseP