| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resspsr.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
resspsr.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
resspsr.u |
⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) |
| 4 |
|
resspsr.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
resspsr.p |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
| 6 |
|
resspsr.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 8 |
2
|
subrgbas |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
10
|
subrgss |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 13 |
9 12
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 15 |
|
mapss |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 16 |
7 14 15
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 18 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐼 ∈ V ) |
| 20 |
3 17 18 4 19
|
psrbas |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐵 = ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 22 |
1 10 18 21 19
|
psrbas |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ 𝑆 ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 23 |
16 20 22
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 24 |
|
reldmpsr |
⊢ Rel dom mPwSer |
| 25 |
24
|
ovprc1 |
⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝐻 ) = ∅ ) |
| 26 |
3 25
|
eqtrid |
⊢ ( ¬ 𝐼 ∈ V → 𝑈 = ∅ ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → 𝑈 = ∅ ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → ( Base ‘ 𝑈 ) = ( Base ‘ ∅ ) ) |
| 29 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 30 |
28 4 29
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → 𝐵 = ∅ ) |
| 31 |
|
0ss |
⊢ ∅ ⊆ ( Base ‘ 𝑆 ) |
| 32 |
30 31
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 33 |
23 32
|
pm2.61dan |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 34 |
5 21
|
ressbas2 |
⊢ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |