| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgpsr.s |
|
| 2 |
|
subrgpsr.h |
|
| 3 |
|
subrgpsr.u |
|
| 4 |
|
subrgpsr.b |
|
| 5 |
|
simpl |
|
| 6 |
|
subrgrcl |
|
| 7 |
6
|
adantl |
|
| 8 |
1 5 7
|
psrring |
|
| 9 |
2
|
subrgring |
|
| 10 |
9
|
adantl |
|
| 11 |
3 5 10
|
psrring |
|
| 12 |
4
|
a1i |
|
| 13 |
|
eqid |
|
| 14 |
|
simpr |
|
| 15 |
1 2 3 4 13 14
|
resspsrbas |
|
| 16 |
1 2 3 4 13 14
|
resspsradd |
|
| 17 |
1 2 3 4 13 14
|
resspsrmul |
|
| 18 |
12 15 16 17
|
ringpropd |
|
| 19 |
11 18
|
mpbid |
|
| 20 |
|
eqid |
|
| 21 |
13 20
|
ressbasss |
|
| 22 |
15 21
|
eqsstrdi |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
1 5 7 23 24 25 26
|
psr1 |
|
| 28 |
25
|
subrg1cl |
|
| 29 |
|
subrgsubg |
|
| 30 |
24
|
subg0cl |
|
| 31 |
29 30
|
syl |
|
| 32 |
28 31
|
ifcld |
|
| 33 |
32
|
adantl |
|
| 34 |
2
|
subrgbas |
|
| 35 |
34
|
adantl |
|
| 36 |
33 35
|
eleqtrd |
|
| 37 |
36
|
adantr |
|
| 38 |
27 37
|
fmpt3d |
|
| 39 |
|
fvex |
|
| 40 |
|
ovex |
|
| 41 |
40
|
rabex |
|
| 42 |
39 41
|
elmap |
|
| 43 |
38 42
|
sylibr |
|
| 44 |
|
eqid |
|
| 45 |
3 44 23 4 5
|
psrbas |
|
| 46 |
43 45
|
eleqtrrd |
|
| 47 |
22 46
|
jca |
|
| 48 |
20 26
|
issubrg |
|
| 49 |
8 19 47 48
|
syl21anbrc |
|