Metamath Proof Explorer


Theorem psr1

Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psr1.d D=f0I|f-1Fin
psr1.z 0˙=0R
psr1.o 1˙=1R
psr1.u U=1S
Assertion psr1 φU=xDifx=I×01˙0˙

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psr1.d D=f0I|f-1Fin
5 psr1.z 0˙=0R
6 psr1.o 1˙=1R
7 psr1.u U=1S
8 eqid xDifx=I×01˙0˙=xDifx=I×01˙0˙
9 eqid BaseS=BaseS
10 1 2 3 4 5 6 8 9 psr1cl φxDifx=I×01˙0˙BaseS
11 2 adantr φyBaseSIV
12 3 adantr φyBaseSRRing
13 eqid S=S
14 simpr φyBaseSyBaseS
15 1 11 12 4 5 6 8 9 13 14 psrlidm φyBaseSxDifx=I×01˙0˙Sy=y
16 1 11 12 4 5 6 8 9 13 14 psrridm φyBaseSySxDifx=I×01˙0˙=y
17 15 16 jca φyBaseSxDifx=I×01˙0˙Sy=yySxDifx=I×01˙0˙=y
18 17 ralrimiva φyBaseSxDifx=I×01˙0˙Sy=yySxDifx=I×01˙0˙=y
19 1 2 3 psrring φSRing
20 9 13 7 isringid SRingxDifx=I×01˙0˙BaseSyBaseSxDifx=I×01˙0˙Sy=yySxDifx=I×01˙0˙=yU=xDifx=I×01˙0˙
21 19 20 syl φxDifx=I×01˙0˙BaseSyBaseSxDifx=I×01˙0˙Sy=yySxDifx=I×01˙0˙=yU=xDifx=I×01˙0˙
22 10 18 21 mpbi2and φU=xDifx=I×01˙0˙