Metamath Proof Explorer


Theorem psrcrng

Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses psrcnrg.s S = I mPwSer R
psrcnrg.i φ I V
psrcnrg.r φ R CRing
Assertion psrcrng φ S CRing

Proof

Step Hyp Ref Expression
1 psrcnrg.s S = I mPwSer R
2 psrcnrg.i φ I V
3 psrcnrg.r φ R CRing
4 crngring R CRing R Ring
5 3 4 syl φ R Ring
6 1 2 5 psrring φ S Ring
7 eqid mulGrp S = mulGrp S
8 eqid Base S = Base S
9 7 8 mgpbas Base S = Base mulGrp S
10 9 a1i φ Base S = Base mulGrp S
11 eqid S = S
12 7 11 mgpplusg S = + mulGrp S
13 12 a1i φ S = + mulGrp S
14 7 ringmgp S Ring mulGrp S Mnd
15 6 14 syl φ mulGrp S Mnd
16 2 3ad2ant1 φ x Base S y Base S I V
17 5 3ad2ant1 φ x Base S y Base S R Ring
18 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
19 simp2 φ x Base S y Base S x Base S
20 simp3 φ x Base S y Base S y Base S
21 3 3ad2ant1 φ x Base S y Base S R CRing
22 1 16 17 18 11 8 19 20 21 psrcom φ x Base S y Base S x S y = y S x
23 10 13 15 22 iscmnd φ mulGrp S CMnd
24 7 iscrng S CRing S Ring mulGrp S CMnd
25 6 23 24 sylanbrc φ S CRing