Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrcnrg.s | |
|
psrcnrg.i | |
||
psrcnrg.r | |
||
Assertion | psrcrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrcnrg.s | |
|
2 | psrcnrg.i | |
|
3 | psrcnrg.r | |
|
4 | crngring | |
|
5 | 3 4 | syl | |
6 | 1 2 5 | psrring | |
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 | mgpbas | |
10 | 9 | a1i | |
11 | eqid | |
|
12 | 7 11 | mgpplusg | |
13 | 12 | a1i | |
14 | 7 | ringmgp | |
15 | 6 14 | syl | |
16 | 2 | 3ad2ant1 | |
17 | 5 | 3ad2ant1 | |
18 | eqid | |
|
19 | simp2 | |
|
20 | simp3 | |
|
21 | 3 | 3ad2ant1 | |
22 | 1 16 17 18 11 8 19 20 21 | psrcom | |
23 | 10 13 15 22 | iscmnd | |
24 | 7 | iscrng | |
25 | 6 23 24 | sylanbrc | |