Metamath Proof Explorer


Theorem psrcrng

Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses psrcnrg.s S=ImPwSerR
psrcnrg.i φIV
psrcnrg.r φRCRing
Assertion psrcrng φSCRing

Proof

Step Hyp Ref Expression
1 psrcnrg.s S=ImPwSerR
2 psrcnrg.i φIV
3 psrcnrg.r φRCRing
4 crngring RCRingRRing
5 3 4 syl φRRing
6 1 2 5 psrring φSRing
7 eqid mulGrpS=mulGrpS
8 eqid BaseS=BaseS
9 7 8 mgpbas BaseS=BasemulGrpS
10 9 a1i φBaseS=BasemulGrpS
11 eqid S=S
12 7 11 mgpplusg S=+mulGrpS
13 12 a1i φS=+mulGrpS
14 7 ringmgp SRingmulGrpSMnd
15 6 14 syl φmulGrpSMnd
16 2 3ad2ant1 φxBaseSyBaseSIV
17 5 3ad2ant1 φxBaseSyBaseSRRing
18 eqid f0I|f-1Fin=f0I|f-1Fin
19 simp2 φxBaseSyBaseSxBaseS
20 simp3 φxBaseSyBaseSyBaseS
21 3 3ad2ant1 φxBaseSyBaseSRCRing
22 1 16 17 18 11 8 19 20 21 psrcom φxBaseSyBaseSxSy=ySx
23 10 13 15 22 iscmnd φmulGrpSCMnd
24 7 iscrng SCRingSRingmulGrpSCMnd
25 6 23 24 sylanbrc φSCRing