Metamath Proof Explorer


Theorem psrassa

Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrcnrg.s S=ImPwSerR
psrcnrg.i φIV
psrcnrg.r φRCRing
Assertion psrassa φSAssAlg

Proof

Step Hyp Ref Expression
1 psrcnrg.s S=ImPwSerR
2 psrcnrg.i φIV
3 psrcnrg.r φRCRing
4 eqidd φBaseS=BaseS
5 1 2 3 psrsca φR=ScalarS
6 eqidd φBaseR=BaseR
7 eqidd φS=S
8 eqidd φS=S
9 3 crngringd φRRing
10 1 2 9 psrlmod φSLMod
11 1 2 9 psrring φSRing
12 2 adantr φxBaseRyBaseSzBaseSIV
13 9 adantr φxBaseRyBaseSzBaseSRRing
14 eqid f0I|f-1Fin=f0I|f-1Fin
15 eqid S=S
16 eqid BaseS=BaseS
17 simpr2 φxBaseRyBaseSzBaseSyBaseS
18 simpr3 φxBaseRyBaseSzBaseSzBaseS
19 3 adantr φxBaseRyBaseSzBaseSRCRing
20 eqid BaseR=BaseR
21 eqid S=S
22 simpr1 φxBaseRyBaseSzBaseSxBaseR
23 1 12 13 14 15 16 17 18 19 20 21 22 psrass23 φxBaseRyBaseSzBaseSxSySz=xSySzySxSz=xSySz
24 23 simpld φxBaseRyBaseSzBaseSxSySz=xSySz
25 23 simprd φxBaseRyBaseSzBaseSySxSz=xSySz
26 4 5 6 7 8 10 11 24 25 isassad φSAssAlg