Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrcnrg.s | |
|
psrcnrg.i | |
||
psrcnrg.r | |
||
Assertion | psrassa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrcnrg.s | |
|
2 | psrcnrg.i | |
|
3 | psrcnrg.r | |
|
4 | eqidd | |
|
5 | 1 2 3 | psrsca | |
6 | eqidd | |
|
7 | eqidd | |
|
8 | eqidd | |
|
9 | 3 | crngringd | |
10 | 1 2 9 | psrlmod | |
11 | 1 2 9 | psrring | |
12 | 2 | adantr | |
13 | 9 | adantr | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | simpr2 | |
|
18 | simpr3 | |
|
19 | 3 | adantr | |
20 | eqid | |
|
21 | eqid | |
|
22 | simpr1 | |
|
23 | 1 12 13 14 15 16 17 18 19 20 21 22 | psrass23 | |
24 | 23 | simpld | |
25 | 23 | simprd | |
26 | 4 5 6 7 8 10 11 24 25 | isassad | |