Metamath Proof Explorer


Theorem psrassa

Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrcnrg.s
|- S = ( I mPwSer R )
psrcnrg.i
|- ( ph -> I e. V )
psrcnrg.r
|- ( ph -> R e. CRing )
Assertion psrassa
|- ( ph -> S e. AssAlg )

Proof

Step Hyp Ref Expression
1 psrcnrg.s
 |-  S = ( I mPwSer R )
2 psrcnrg.i
 |-  ( ph -> I e. V )
3 psrcnrg.r
 |-  ( ph -> R e. CRing )
4 eqidd
 |-  ( ph -> ( Base ` S ) = ( Base ` S ) )
5 1 2 3 psrsca
 |-  ( ph -> R = ( Scalar ` S ) )
6 eqidd
 |-  ( ph -> ( Base ` R ) = ( Base ` R ) )
7 eqidd
 |-  ( ph -> ( .s ` S ) = ( .s ` S ) )
8 eqidd
 |-  ( ph -> ( .r ` S ) = ( .r ` S ) )
9 crngring
 |-  ( R e. CRing -> R e. Ring )
10 3 9 syl
 |-  ( ph -> R e. Ring )
11 1 2 10 psrlmod
 |-  ( ph -> S e. LMod )
12 1 2 10 psrring
 |-  ( ph -> S e. Ring )
13 2 adantr
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> I e. V )
14 10 adantr
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Ring )
15 eqid
 |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin }
16 eqid
 |-  ( .r ` S ) = ( .r ` S )
17 eqid
 |-  ( Base ` S ) = ( Base ` S )
18 simpr2
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` S ) )
19 simpr3
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) )
20 3 adantr
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. CRing )
21 eqid
 |-  ( Base ` R ) = ( Base ` R )
22 eqid
 |-  ( .s ` S ) = ( .s ` S )
23 simpr1
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` R ) )
24 1 13 14 15 16 17 18 19 20 21 22 23 psrass23
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( ( x ( .s ` S ) y ) ( .r ` S ) z ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) /\ ( y ( .r ` S ) ( x ( .s ` S ) z ) ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) ) )
25 24 simpld
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .s ` S ) y ) ( .r ` S ) z ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) )
26 24 simprd
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( y ( .r ` S ) ( x ( .s ` S ) z ) ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) )
27 4 5 6 7 8 11 12 3 25 26 isassad
 |-  ( ph -> S e. AssAlg )