| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isassad.v |
|- ( ph -> V = ( Base ` W ) ) |
| 2 |
|
isassad.f |
|- ( ph -> F = ( Scalar ` W ) ) |
| 3 |
|
isassad.b |
|- ( ph -> B = ( Base ` F ) ) |
| 4 |
|
isassad.s |
|- ( ph -> .x. = ( .s ` W ) ) |
| 5 |
|
isassad.t |
|- ( ph -> .X. = ( .r ` W ) ) |
| 6 |
|
isassad.1 |
|- ( ph -> W e. LMod ) |
| 7 |
|
isassad.2 |
|- ( ph -> W e. Ring ) |
| 8 |
|
isassad.4 |
|- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) ) |
| 9 |
|
isassad.5 |
|- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) |
| 10 |
6 7
|
jca |
|- ( ph -> ( W e. LMod /\ W e. Ring ) ) |
| 11 |
8 9
|
jca |
|- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) |
| 12 |
11
|
ralrimivvva |
|- ( ph -> A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) |
| 13 |
2
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) |
| 14 |
3 13
|
eqtrd |
|- ( ph -> B = ( Base ` ( Scalar ` W ) ) ) |
| 15 |
4
|
oveqd |
|- ( ph -> ( r .x. x ) = ( r ( .s ` W ) x ) ) |
| 16 |
|
eqidd |
|- ( ph -> y = y ) |
| 17 |
5 15 16
|
oveq123d |
|- ( ph -> ( ( r .x. x ) .X. y ) = ( ( r ( .s ` W ) x ) ( .r ` W ) y ) ) |
| 18 |
|
eqidd |
|- ( ph -> r = r ) |
| 19 |
5
|
oveqd |
|- ( ph -> ( x .X. y ) = ( x ( .r ` W ) y ) ) |
| 20 |
4 18 19
|
oveq123d |
|- ( ph -> ( r .x. ( x .X. y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) |
| 21 |
17 20
|
eqeq12d |
|- ( ph -> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) <-> ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) |
| 22 |
|
eqidd |
|- ( ph -> x = x ) |
| 23 |
4
|
oveqd |
|- ( ph -> ( r .x. y ) = ( r ( .s ` W ) y ) ) |
| 24 |
5 22 23
|
oveq123d |
|- ( ph -> ( x .X. ( r .x. y ) ) = ( x ( .r ` W ) ( r ( .s ` W ) y ) ) ) |
| 25 |
24 20
|
eqeq12d |
|- ( ph -> ( ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) <-> ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) |
| 26 |
21 25
|
anbi12d |
|- ( ph -> ( ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 27 |
1 26
|
raleqbidv |
|- ( ph -> ( A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 28 |
1 27
|
raleqbidv |
|- ( ph -> ( A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 29 |
14 28
|
raleqbidv |
|- ( ph -> ( A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 30 |
12 29
|
mpbid |
|- ( ph -> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) |
| 31 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 32 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 33 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 34 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 35 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
| 36 |
31 32 33 34 35
|
isassa |
|- ( W e. AssAlg <-> ( ( W e. LMod /\ W e. Ring ) /\ A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 37 |
10 30 36
|
sylanbrc |
|- ( ph -> W e. AssAlg ) |