| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubassa.s |
|- S = ( W |`s A ) |
| 2 |
|
issubassa.l |
|- L = ( LSubSp ` W ) |
| 3 |
1
|
subrgbas |
|- ( A e. ( SubRing ` W ) -> A = ( Base ` S ) ) |
| 4 |
3
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A = ( Base ` S ) ) |
| 5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 6 |
1 5
|
resssca |
|- ( A e. ( SubRing ` W ) -> ( Scalar ` W ) = ( Scalar ` S ) ) |
| 7 |
6
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Scalar ` W ) = ( Scalar ` S ) ) |
| 8 |
|
eqidd |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
| 9 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 10 |
1 9
|
ressvsca |
|- ( A e. ( SubRing ` W ) -> ( .s ` W ) = ( .s ` S ) ) |
| 11 |
10
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .s ` W ) = ( .s ` S ) ) |
| 12 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
| 13 |
1 12
|
ressmulr |
|- ( A e. ( SubRing ` W ) -> ( .r ` W ) = ( .r ` S ) ) |
| 14 |
13
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .r ` W ) = ( .r ` S ) ) |
| 15 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
| 16 |
|
simpr |
|- ( ( A e. ( SubRing ` W ) /\ A e. L ) -> A e. L ) |
| 17 |
1 2
|
lsslmod |
|- ( ( W e. LMod /\ A e. L ) -> S e. LMod ) |
| 18 |
15 16 17
|
syl2an |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. LMod ) |
| 19 |
1
|
subrgring |
|- ( A e. ( SubRing ` W ) -> S e. Ring ) |
| 20 |
19
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. Ring ) |
| 21 |
|
idd |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 22 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 23 |
22
|
subrgss |
|- ( A e. ( SubRing ` W ) -> A C_ ( Base ` W ) ) |
| 24 |
23
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A C_ ( Base ` W ) ) |
| 25 |
24
|
sseld |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( y e. A -> y e. ( Base ` W ) ) ) |
| 26 |
24
|
sseld |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( z e. A -> z e. ( Base ` W ) ) ) |
| 27 |
21 25 26
|
3anim123d |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) ) |
| 28 |
27
|
imp |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) |
| 29 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 30 |
22 5 29 9 12
|
assaass |
|- ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 31 |
30
|
adantlr |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 32 |
28 31
|
syldan |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 33 |
22 5 29 9 12
|
assaassr |
|- ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 34 |
33
|
adantlr |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 35 |
28 34
|
syldan |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 36 |
4 7 8 11 14 18 20 32 35
|
isassad |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. AssAlg ) |