| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isassad.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
| 2 |
|
isassad.f |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
| 3 |
|
isassad.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) |
| 4 |
|
isassad.s |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) |
| 5 |
|
isassad.t |
⊢ ( 𝜑 → × = ( .r ‘ 𝑊 ) ) |
| 6 |
|
isassad.1 |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 7 |
|
isassad.2 |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 8 |
|
isassad.4 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) |
| 9 |
|
isassad.5 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) |
| 10 |
6 7
|
jca |
⊢ ( 𝜑 → ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ) |
| 11 |
8 9
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
| 12 |
11
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
| 13 |
2
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 |
3 13
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 15 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑟 · 𝑥 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
| 16 |
|
eqidd |
⊢ ( 𝜑 → 𝑦 = 𝑦 ) |
| 17 |
5 15 16
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 18 |
|
eqidd |
⊢ ( 𝜑 → 𝑟 = 𝑟 ) |
| 19 |
5
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 × 𝑦 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 20 |
4 18 19
|
oveq123d |
⊢ ( 𝜑 → ( 𝑟 · ( 𝑥 × 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) |
| 21 |
17 20
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
| 22 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
| 23 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑟 · 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 24 |
5 22 23
|
oveq123d |
⊢ ( 𝜑 → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 25 |
24 20
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
| 26 |
21 25
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 27 |
1 26
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 28 |
1 27
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 29 |
14 28
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 30 |
12 29
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 32 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 33 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 34 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 35 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 36 |
31 32 33 34 35
|
isassa |
⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 37 |
10 30 36
|
sylanbrc |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |