Metamath Proof Explorer


Theorem psrassa

Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrcnrg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrcnrg.i ( 𝜑𝐼𝑉 )
psrcnrg.r ( 𝜑𝑅 ∈ CRing )
Assertion psrassa ( 𝜑𝑆 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 psrcnrg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrcnrg.i ( 𝜑𝐼𝑉 )
3 psrcnrg.r ( 𝜑𝑅 ∈ CRing )
4 eqidd ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) )
5 1 2 3 psrsca ( 𝜑𝑅 = ( Scalar ‘ 𝑆 ) )
6 eqidd ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) )
7 eqidd ( 𝜑 → ( ·𝑠𝑆 ) = ( ·𝑠𝑆 ) )
8 eqidd ( 𝜑 → ( .r𝑆 ) = ( .r𝑆 ) )
9 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
10 3 9 syl ( 𝜑𝑅 ∈ Ring )
11 1 2 10 psrlmod ( 𝜑𝑆 ∈ LMod )
12 1 2 10 psrring ( 𝜑𝑆 ∈ Ring )
13 2 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐼𝑉 )
14 10 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring )
15 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
16 eqid ( .r𝑆 ) = ( .r𝑆 )
17 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
18 simpr2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) )
19 simpr3 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) )
20 3 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ CRing )
21 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
22 eqid ( ·𝑠𝑆 ) = ( ·𝑠𝑆 )
23 simpr1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
24 1 13 14 15 16 17 18 19 20 21 22 23 psrass23 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝑥 ( ·𝑠𝑆 ) 𝑦 ) ( .r𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠𝑆 ) ( 𝑦 ( .r𝑆 ) 𝑧 ) ) ∧ ( 𝑦 ( .r𝑆 ) ( 𝑥 ( ·𝑠𝑆 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠𝑆 ) ( 𝑦 ( .r𝑆 ) 𝑧 ) ) ) )
25 24 simpld ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠𝑆 ) 𝑦 ) ( .r𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠𝑆 ) ( 𝑦 ( .r𝑆 ) 𝑧 ) ) )
26 24 simprd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( .r𝑆 ) ( 𝑥 ( ·𝑠𝑆 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠𝑆 ) ( 𝑦 ( .r𝑆 ) 𝑧 ) ) )
27 4 5 6 7 8 11 12 3 25 26 isassad ( 𝜑𝑆 ∈ AssAlg )