| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrcnrg.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psrcnrg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
psrcnrg.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 5 |
1 2 3
|
psrsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) |
| 9 |
3
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
1 2 9
|
psrlmod |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
| 11 |
1 2 9
|
psrring |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐼 ∈ 𝑉 ) |
| 13 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
| 14 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 17 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 18 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
| 19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ CRing ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 21 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
| 22 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
1 12 13 14 15 16 17 18 19 20 21 22
|
psrass23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) ) |
| 24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
| 25 |
23
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
| 26 |
4 5 6 7 8 10 11 24 25
|
isassad |
⊢ ( 𝜑 → 𝑆 ∈ AssAlg ) |