Metamath Proof Explorer


Theorem psrass23

Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrring.i ( 𝜑𝐼𝑉 )
psrring.r ( 𝜑𝑅 ∈ Ring )
psrass.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psrass.t × = ( .r𝑆 )
psrass.b 𝐵 = ( Base ‘ 𝑆 )
psrass.x ( 𝜑𝑋𝐵 )
psrass.y ( 𝜑𝑌𝐵 )
psrcom.c ( 𝜑𝑅 ∈ CRing )
psrass.k 𝐾 = ( Base ‘ 𝑅 )
psrass.n · = ( ·𝑠𝑆 )
psrass.a ( 𝜑𝐴𝐾 )
Assertion psrass23 ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrring.i ( 𝜑𝐼𝑉 )
3 psrring.r ( 𝜑𝑅 ∈ Ring )
4 psrass.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 psrass.t × = ( .r𝑆 )
6 psrass.b 𝐵 = ( Base ‘ 𝑆 )
7 psrass.x ( 𝜑𝑋𝐵 )
8 psrass.y ( 𝜑𝑌𝐵 )
9 psrcom.c ( 𝜑𝑅 ∈ CRing )
10 psrass.k 𝐾 = ( Base ‘ 𝑅 )
11 psrass.n · = ( ·𝑠𝑆 )
12 psrass.a ( 𝜑𝐴𝐾 )
13 1 2 3 4 5 6 7 8 10 11 12 psrass23l ( 𝜑 → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) )
14 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
15 eqid ( .r𝑅 ) = ( .r𝑅 )
16 12 adantr ( ( 𝜑𝑘𝐷 ) → 𝐴𝐾 )
17 16 10 eleqtrdi ( ( 𝜑𝑘𝐷 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
18 17 adantr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
19 8 ad2antrr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑌𝐵 )
20 ssrab2 { 𝑦𝐷𝑦r𝑘 } ⊆ 𝐷
21 2 ad2antrr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝐼𝑉 )
22 simplr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑘𝐷 )
23 simpr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } )
24 eqid { 𝑦𝐷𝑦r𝑘 } = { 𝑦𝐷𝑦r𝑘 }
25 4 24 psrbagconcl ( ( 𝐼𝑉𝑘𝐷𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( 𝑘f𝑥 ) ∈ { 𝑦𝐷𝑦r𝑘 } )
26 21 22 23 25 syl3anc ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( 𝑘f𝑥 ) ∈ { 𝑦𝐷𝑦r𝑘 } )
27 20 26 sseldi ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( 𝑘f𝑥 ) ∈ 𝐷 )
28 1 11 14 6 15 4 18 19 27 psrvscaval ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) = ( 𝐴 ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) )
29 28 oveq2d ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) ) = ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐴 ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) )
30 7 ad2antrr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑋𝐵 )
31 1 14 4 6 30 psrelbas ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
32 20 23 sseldi ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑥𝐷 )
33 31 32 ffvelrnd ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( 𝑋𝑥 ) ∈ ( Base ‘ 𝑅 ) )
34 1 14 4 6 19 psrelbas ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
35 34 27 ffvelrnd ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ∈ ( Base ‘ 𝑅 ) )
36 9 ad2antrr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑅 ∈ CRing )
37 14 15 crngcom ( ( 𝑅 ∈ CRing ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 ( .r𝑅 ) 𝑣 ) = ( 𝑣 ( .r𝑅 ) 𝑢 ) )
38 37 3expb ( ( 𝑅 ∈ CRing ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑢 ( .r𝑅 ) 𝑣 ) = ( 𝑣 ( .r𝑅 ) 𝑢 ) )
39 36 38 sylan ( ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑢 ( .r𝑅 ) 𝑣 ) = ( 𝑣 ( .r𝑅 ) 𝑢 ) )
40 3 ad2antrr ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → 𝑅 ∈ Ring )
41 14 15 ringass ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ∧ 𝑤 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑢 ( .r𝑅 ) 𝑣 ) ( .r𝑅 ) 𝑤 ) = ( 𝑢 ( .r𝑅 ) ( 𝑣 ( .r𝑅 ) 𝑤 ) ) )
42 40 41 sylan ( ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ∧ 𝑤 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑢 ( .r𝑅 ) 𝑣 ) ( .r𝑅 ) 𝑤 ) = ( 𝑢 ( .r𝑅 ) ( 𝑣 ( .r𝑅 ) 𝑤 ) ) )
43 33 18 35 39 42 caov12d ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐴 ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) = ( 𝐴 ( .r𝑅 ) ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) )
44 29 43 eqtrd ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) ) = ( 𝐴 ( .r𝑅 ) ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) )
45 44 mpteq2dva ( ( 𝜑𝑘𝐷 ) → ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( 𝐴 ( .r𝑅 ) ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) )
46 45 oveq2d ( ( 𝜑𝑘𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( 𝐴 ( .r𝑅 ) ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
47 eqid ( 0g𝑅 ) = ( 0g𝑅 )
48 eqid ( +g𝑅 ) = ( +g𝑅 )
49 3 adantr ( ( 𝜑𝑘𝐷 ) → 𝑅 ∈ Ring )
50 4 psrbaglefi ( ( 𝐼𝑉𝑘𝐷 ) → { 𝑦𝐷𝑦r𝑘 } ∈ Fin )
51 2 50 sylan ( ( 𝜑𝑘𝐷 ) → { 𝑦𝐷𝑦r𝑘 } ∈ Fin )
52 14 15 ringcl ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) )
53 40 33 35 52 syl3anc ( ( ( 𝜑𝑘𝐷 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) )
54 ovex ( ℕ0m 𝐼 ) ∈ V
55 4 54 rabex2 𝐷 ∈ V
56 55 mptrabex ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ∈ V
57 funmpt Fun ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) )
58 fvex ( 0g𝑅 ) ∈ V
59 56 57 58 3pm3.2i ( ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V )
60 59 a1i ( ( 𝜑𝑘𝐷 ) → ( ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V ) )
61 suppssdm ( ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ dom ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) )
62 eqid ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) )
63 62 dmmptss dom ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ⊆ { 𝑦𝐷𝑦r𝑘 }
64 61 63 sstri ( ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝑦𝐷𝑦r𝑘 }
65 64 a1i ( ( 𝜑𝑘𝐷 ) → ( ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝑦𝐷𝑦r𝑘 } )
66 suppssfifsupp ( ( ( ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V ) ∧ ( { 𝑦𝐷𝑦r𝑘 } ∈ Fin ∧ ( ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝑦𝐷𝑦r𝑘 } ) ) → ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) finSupp ( 0g𝑅 ) )
67 60 51 65 66 syl12anc ( ( 𝜑𝑘𝐷 ) → ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) finSupp ( 0g𝑅 ) )
68 14 47 48 15 49 51 17 53 67 gsummulc2 ( ( 𝜑𝑘𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( 𝐴 ( .r𝑅 ) ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) = ( 𝐴 ( .r𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
69 46 68 eqtrd ( ( 𝜑𝑘𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) ) ) ) = ( 𝐴 ( .r𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
70 69 mpteq2dva ( 𝜑 → ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) ) ) ) ) = ( 𝑘𝐷 ↦ ( 𝐴 ( .r𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) )
71 1 11 10 6 3 12 8 psrvscacl ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝐵 )
72 1 6 15 5 4 7 71 psrmulfval ( 𝜑 → ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
73 1 6 5 3 7 8 psrmulcl ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 )
74 1 11 10 6 15 4 12 73 psrvsca ( 𝜑 → ( 𝐴 · ( 𝑋 × 𝑌 ) ) = ( ( 𝐷 × { 𝐴 } ) ∘f ( .r𝑅 ) ( 𝑋 × 𝑌 ) ) )
75 55 a1i ( 𝜑𝐷 ∈ V )
76 ovex ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ∈ V
77 76 a1i ( ( 𝜑𝑘𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ∈ V )
78 fconstmpt ( 𝐷 × { 𝐴 } ) = ( 𝑘𝐷𝐴 )
79 78 a1i ( 𝜑 → ( 𝐷 × { 𝐴 } ) = ( 𝑘𝐷𝐴 ) )
80 1 6 15 5 4 7 8 psrmulfval ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
81 75 16 77 79 80 offval2 ( 𝜑 → ( ( 𝐷 × { 𝐴 } ) ∘f ( .r𝑅 ) ( 𝑋 × 𝑌 ) ) = ( 𝑘𝐷 ↦ ( 𝐴 ( .r𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) )
82 74 81 eqtrd ( 𝜑 → ( 𝐴 · ( 𝑋 × 𝑌 ) ) = ( 𝑘𝐷 ↦ ( 𝐴 ( .r𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) )
83 70 72 82 3eqtr4d ( 𝜑 → ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) )
84 13 83 jca ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) )