Step |
Hyp |
Ref |
Expression |
1 |
|
psrvsca.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrvsca.n |
⊢ ∙ = ( ·𝑠 ‘ 𝑆 ) |
3 |
|
psrvsca.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
psrvsca.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
5 |
|
psrvsca.m |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
psrvsca.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
7 |
|
psrvsca.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
8 |
|
psrvsca.y |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
10 |
9
|
xpeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐷 × { 𝑥 } ) = ( 𝐷 × { 𝑋 } ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝑓 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐷 × { 𝑋 } ) ∘f · 𝑓 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |
13 |
1 2 3 4 5 6
|
psrvscafval |
⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |
14 |
|
ovex |
⊢ ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ∈ V |
15 |
11 12 13 14
|
ovmpo |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝐹 ∈ 𝐵 ) → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |
16 |
7 8 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |