Metamath Proof Explorer


Theorem psrvscaval

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrvsca.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrvsca.n = ( ·𝑠𝑆 )
psrvsca.k 𝐾 = ( Base ‘ 𝑅 )
psrvsca.b 𝐵 = ( Base ‘ 𝑆 )
psrvsca.m · = ( .r𝑅 )
psrvsca.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrvsca.x ( 𝜑𝑋𝐾 )
psrvsca.y ( 𝜑𝐹𝐵 )
psrvscaval.y ( 𝜑𝑌𝐷 )
Assertion psrvscaval ( 𝜑 → ( ( 𝑋 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 psrvsca.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrvsca.n = ( ·𝑠𝑆 )
3 psrvsca.k 𝐾 = ( Base ‘ 𝑅 )
4 psrvsca.b 𝐵 = ( Base ‘ 𝑆 )
5 psrvsca.m · = ( .r𝑅 )
6 psrvsca.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
7 psrvsca.x ( 𝜑𝑋𝐾 )
8 psrvsca.y ( 𝜑𝐹𝐵 )
9 psrvscaval.y ( 𝜑𝑌𝐷 )
10 1 2 3 4 5 6 7 8 psrvsca ( 𝜑 → ( 𝑋 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) )
11 10 fveq1d ( 𝜑 → ( ( 𝑋 𝐹 ) ‘ 𝑌 ) = ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) )
12 ovex ( ℕ0m 𝐼 ) ∈ V
13 6 12 rabex2 𝐷 ∈ V
14 13 a1i ( 𝜑𝐷 ∈ V )
15 1 3 6 4 8 psrelbas ( 𝜑𝐹 : 𝐷𝐾 )
16 15 ffnd ( 𝜑𝐹 Fn 𝐷 )
17 eqidd ( ( 𝜑𝑌𝐷 ) → ( 𝐹𝑌 ) = ( 𝐹𝑌 ) )
18 14 7 16 17 ofc1 ( ( 𝜑𝑌𝐷 ) → ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹𝑌 ) ) )
19 9 18 mpdan ( 𝜑 → ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹𝑌 ) ) )
20 11 19 eqtrd ( 𝜑 → ( ( 𝑋 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹𝑌 ) ) )