Metamath Proof Explorer


Theorem psrvscaval

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrvsca.s S=ImPwSerR
psrvsca.n ˙=S
psrvsca.k K=BaseR
psrvsca.b B=BaseS
psrvsca.m ·˙=R
psrvsca.d D=h0I|h-1Fin
psrvsca.x φXK
psrvsca.y φFB
psrvscaval.y φYD
Assertion psrvscaval φX˙FY=X·˙FY

Proof

Step Hyp Ref Expression
1 psrvsca.s S=ImPwSerR
2 psrvsca.n ˙=S
3 psrvsca.k K=BaseR
4 psrvsca.b B=BaseS
5 psrvsca.m ·˙=R
6 psrvsca.d D=h0I|h-1Fin
7 psrvsca.x φXK
8 psrvsca.y φFB
9 psrvscaval.y φYD
10 1 2 3 4 5 6 7 8 psrvsca φX˙F=D×X·˙fF
11 10 fveq1d φX˙FY=D×X·˙fFY
12 ovex 0IV
13 6 12 rabex2 DV
14 13 a1i φDV
15 1 3 6 4 8 psrelbas φF:DK
16 15 ffnd φFFnD
17 eqidd φYDFY=FY
18 14 7 16 17 ofc1 φYDD×X·˙fFY=X·˙FY
19 9 18 mpdan φD×X·˙fFY=X·˙FY
20 11 19 eqtrd φX˙FY=X·˙FY