Metamath Proof Explorer


Theorem psrvscacl

Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrvscacl.s S = I mPwSer R
psrvscacl.n · ˙ = S
psrvscacl.k K = Base R
psrvscacl.b B = Base S
psrvscacl.r φ R Ring
psrvscacl.x φ X K
psrvscacl.y φ F B
Assertion psrvscacl φ X · ˙ F B

Proof

Step Hyp Ref Expression
1 psrvscacl.s S = I mPwSer R
2 psrvscacl.n · ˙ = S
3 psrvscacl.k K = Base R
4 psrvscacl.b B = Base S
5 psrvscacl.r φ R Ring
6 psrvscacl.x φ X K
7 psrvscacl.y φ F B
8 eqid R = R
9 3 8 ringcl R Ring x K y K x R y K
10 9 3expb R Ring x K y K x R y K
11 5 10 sylan φ x K y K x R y K
12 fconst6g X K f 0 I | f -1 Fin × X : f 0 I | f -1 Fin K
13 6 12 syl φ f 0 I | f -1 Fin × X : f 0 I | f -1 Fin K
14 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
15 1 3 14 4 7 psrelbas φ F : f 0 I | f -1 Fin K
16 ovex 0 I V
17 16 rabex f 0 I | f -1 Fin V
18 17 a1i φ f 0 I | f -1 Fin V
19 inidm f 0 I | f -1 Fin f 0 I | f -1 Fin = f 0 I | f -1 Fin
20 11 13 15 18 18 19 off φ f 0 I | f -1 Fin × X R f F : f 0 I | f -1 Fin K
21 3 fvexi K V
22 21 17 elmap f 0 I | f -1 Fin × X R f F K f 0 I | f -1 Fin f 0 I | f -1 Fin × X R f F : f 0 I | f -1 Fin K
23 20 22 sylibr φ f 0 I | f -1 Fin × X R f F K f 0 I | f -1 Fin
24 1 2 3 4 8 14 6 7 psrvsca φ X · ˙ F = f 0 I | f -1 Fin × X R f F
25 reldmpsr Rel dom mPwSer
26 25 1 4 elbasov F B I V R V
27 7 26 syl φ I V R V
28 27 simpld φ I V
29 1 3 14 4 28 psrbas φ B = K f 0 I | f -1 Fin
30 23 24 29 3eltr4d φ X · ˙ F B