Step |
Hyp |
Ref |
Expression |
1 |
|
psrvsca.s |
|- S = ( I mPwSer R ) |
2 |
|
psrvsca.n |
|- .xb = ( .s ` S ) |
3 |
|
psrvsca.k |
|- K = ( Base ` R ) |
4 |
|
psrvsca.b |
|- B = ( Base ` S ) |
5 |
|
psrvsca.m |
|- .x. = ( .r ` R ) |
6 |
|
psrvsca.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
7 |
|
psrvsca.x |
|- ( ph -> X e. K ) |
8 |
|
psrvsca.y |
|- ( ph -> F e. B ) |
9 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
10 |
9
|
xpeq2d |
|- ( x = X -> ( D X. { x } ) = ( D X. { X } ) ) |
11 |
10
|
oveq1d |
|- ( x = X -> ( ( D X. { x } ) oF .x. f ) = ( ( D X. { X } ) oF .x. f ) ) |
12 |
|
oveq2 |
|- ( f = F -> ( ( D X. { X } ) oF .x. f ) = ( ( D X. { X } ) oF .x. F ) ) |
13 |
1 2 3 4 5 6
|
psrvscafval |
|- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |
14 |
|
ovex |
|- ( ( D X. { X } ) oF .x. F ) e. _V |
15 |
11 12 13 14
|
ovmpo |
|- ( ( X e. K /\ F e. B ) -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) |
16 |
7 8 15
|
syl2anc |
|- ( ph -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) |