Metamath Proof Explorer


Theorem psrvscafval

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses psrvsca.s
|- S = ( I mPwSer R )
psrvsca.n
|- .xb = ( .s ` S )
psrvsca.k
|- K = ( Base ` R )
psrvsca.b
|- B = ( Base ` S )
psrvsca.m
|- .x. = ( .r ` R )
psrvsca.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
Assertion psrvscafval
|- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) )

Proof

Step Hyp Ref Expression
1 psrvsca.s
 |-  S = ( I mPwSer R )
2 psrvsca.n
 |-  .xb = ( .s ` S )
3 psrvsca.k
 |-  K = ( Base ` R )
4 psrvsca.b
 |-  B = ( Base ` S )
5 psrvsca.m
 |-  .x. = ( .r ` R )
6 psrvsca.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
7 eqid
 |-  ( +g ` R ) = ( +g ` R )
8 eqid
 |-  ( TopOpen ` R ) = ( TopOpen ` R )
9 simpl
 |-  ( ( I e. _V /\ R e. _V ) -> I e. _V )
10 1 3 6 4 9 psrbas
 |-  ( ( I e. _V /\ R e. _V ) -> B = ( K ^m D ) )
11 eqid
 |-  ( +g ` S ) = ( +g ` S )
12 1 4 7 11 psrplusg
 |-  ( +g ` S ) = ( oF ( +g ` R ) |` ( B X. B ) )
13 eqid
 |-  ( .r ` S ) = ( .r ` S )
14 1 4 5 13 6 psrmulr
 |-  ( .r ` S ) = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) )
15 eqid
 |-  ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) )
16 eqidd
 |-  ( ( I e. _V /\ R e. _V ) -> ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) = ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) )
17 simpr
 |-  ( ( I e. _V /\ R e. _V ) -> R e. _V )
18 1 3 7 5 8 6 10 12 14 15 16 9 17 psrval
 |-  ( ( I e. _V /\ R e. _V ) -> S = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) )
19 18 fveq2d
 |-  ( ( I e. _V /\ R e. _V ) -> ( .s ` S ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) ) )
20 3 fvexi
 |-  K e. _V
21 4 fvexi
 |-  B e. _V
22 20 21 mpoex
 |-  ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) e. _V
23 psrvalstr
 |-  ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) Struct <. 1 , 9 >.
24 vscaid
 |-  .s = Slot ( .s ` ndx )
25 snsstp2
 |-  { <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. } C_ { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. }
26 ssun2
 |-  { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } )
27 25 26 sstri
 |-  { <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } )
28 23 24 27 strfv
 |-  ( ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) e. _V -> ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) ) )
29 22 28 ax-mp
 |-  ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) )
30 19 2 29 3eqtr4g
 |-  ( ( I e. _V /\ R e. _V ) -> .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) )
31 eqid
 |-  (/) = (/)
32 fn0
 |-  ( (/) Fn (/) <-> (/) = (/) )
33 31 32 mpbir
 |-  (/) Fn (/)
34 reldmpsr
 |-  Rel dom mPwSer
35 34 ovprc
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) )
36 1 35 syl5eq
 |-  ( -. ( I e. _V /\ R e. _V ) -> S = (/) )
37 36 fveq2d
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( .s ` S ) = ( .s ` (/) ) )
38 df-vsca
 |-  .s = Slot 6
39 38 str0
 |-  (/) = ( .s ` (/) )
40 37 2 39 3eqtr4g
 |-  ( -. ( I e. _V /\ R e. _V ) -> .xb = (/) )
41 34 1 4 elbasov
 |-  ( f e. B -> ( I e. _V /\ R e. _V ) )
42 41 con3i
 |-  ( -. ( I e. _V /\ R e. _V ) -> -. f e. B )
43 42 eq0rdv
 |-  ( -. ( I e. _V /\ R e. _V ) -> B = (/) )
44 43 xpeq2d
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( K X. B ) = ( K X. (/) ) )
45 xp0
 |-  ( K X. (/) ) = (/)
46 44 45 syl6eq
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( K X. B ) = (/) )
47 40 46 fneq12d
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( .xb Fn ( K X. B ) <-> (/) Fn (/) ) )
48 33 47 mpbiri
 |-  ( -. ( I e. _V /\ R e. _V ) -> .xb Fn ( K X. B ) )
49 fnov
 |-  ( .xb Fn ( K X. B ) <-> .xb = ( x e. K , f e. B |-> ( x .xb f ) ) )
50 48 49 sylib
 |-  ( -. ( I e. _V /\ R e. _V ) -> .xb = ( x e. K , f e. B |-> ( x .xb f ) ) )
51 42 pm2.21d
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( f e. B -> ( ( D X. { x } ) oF .x. f ) = ( x .xb f ) ) )
52 51 a1d
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( x e. K -> ( f e. B -> ( ( D X. { x } ) oF .x. f ) = ( x .xb f ) ) ) )
53 52 3imp
 |-  ( ( -. ( I e. _V /\ R e. _V ) /\ x e. K /\ f e. B ) -> ( ( D X. { x } ) oF .x. f ) = ( x .xb f ) )
54 53 mpoeq3dva
 |-  ( -. ( I e. _V /\ R e. _V ) -> ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( x e. K , f e. B |-> ( x .xb f ) ) )
55 50 54 eqtr4d
 |-  ( -. ( I e. _V /\ R e. _V ) -> .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) )
56 30 55 pm2.61i
 |-  .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) )