Metamath Proof Explorer
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
psrmulcl.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
|
|
psrmulcl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
|
|
psrmulcl.t |
⊢ · = ( .r ‘ 𝑆 ) |
|
|
psrmulcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
psrmulcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
psrmulcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
Assertion |
psrmulcl |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
psrmulcl.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrmulcl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psrmulcl.t |
⊢ · = ( .r ‘ 𝑆 ) |
4 |
|
psrmulcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
psrmulcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
psrmulcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
8 |
1 2 3 4 5 6 7
|
psrmulcllem |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |