Metamath Proof Explorer


Theorem psrmulcl

Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrmulcl.s S=ImPwSerR
psrmulcl.b B=BaseS
psrmulcl.t ·˙=S
psrmulcl.r φRRing
psrmulcl.x φXB
psrmulcl.y φYB
Assertion psrmulcl φX·˙YB

Proof

Step Hyp Ref Expression
1 psrmulcl.s S=ImPwSerR
2 psrmulcl.b B=BaseS
3 psrmulcl.t ·˙=S
4 psrmulcl.r φRRing
5 psrmulcl.x φXB
6 psrmulcl.y φYB
7 eqid f0I|f-1Fin=f0I|f-1Fin
8 1 2 3 4 5 6 7 psrmulcllem φX·˙YB