Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrmulcl.s | |- S = ( I mPwSer R ) |
|
psrmulcl.b | |- B = ( Base ` S ) |
||
psrmulcl.t | |- .x. = ( .r ` S ) |
||
psrmulcl.r | |- ( ph -> R e. Ring ) |
||
psrmulcl.x | |- ( ph -> X e. B ) |
||
psrmulcl.y | |- ( ph -> Y e. B ) |
||
Assertion | psrmulcl | |- ( ph -> ( X .x. Y ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrmulcl.s | |- S = ( I mPwSer R ) |
|
2 | psrmulcl.b | |- B = ( Base ` S ) |
|
3 | psrmulcl.t | |- .x. = ( .r ` S ) |
|
4 | psrmulcl.r | |- ( ph -> R e. Ring ) |
|
5 | psrmulcl.x | |- ( ph -> X e. B ) |
|
6 | psrmulcl.y | |- ( ph -> Y e. B ) |
|
7 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
8 | 1 2 3 4 5 6 7 | psrmulcllem | |- ( ph -> ( X .x. Y ) e. B ) |