Metamath Proof Explorer


Theorem psrmulcl

Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrmulcl.s
|- S = ( I mPwSer R )
psrmulcl.b
|- B = ( Base ` S )
psrmulcl.t
|- .x. = ( .r ` S )
psrmulcl.r
|- ( ph -> R e. Ring )
psrmulcl.x
|- ( ph -> X e. B )
psrmulcl.y
|- ( ph -> Y e. B )
Assertion psrmulcl
|- ( ph -> ( X .x. Y ) e. B )

Proof

Step Hyp Ref Expression
1 psrmulcl.s
 |-  S = ( I mPwSer R )
2 psrmulcl.b
 |-  B = ( Base ` S )
3 psrmulcl.t
 |-  .x. = ( .r ` S )
4 psrmulcl.r
 |-  ( ph -> R e. Ring )
5 psrmulcl.x
 |-  ( ph -> X e. B )
6 psrmulcl.y
 |-  ( ph -> Y e. B )
7 eqid
 |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin }
8 1 2 3 4 5 6 7 psrmulcllem
 |-  ( ph -> ( X .x. Y ) e. B )