Step |
Hyp |
Ref |
Expression |
1 |
|
psrring.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrring.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) |
7 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
9 |
1 2 8
|
psrgrp |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
12 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
13 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
14 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
15 |
1 10 11 12 13 14
|
psrmulcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐼 ∈ 𝑉 ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
18 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
19 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
20 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
21 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
22 |
1 16 17 18 11 10 19 20 21
|
psrass1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
23 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
24 |
1 16 17 18 11 10 19 20 21 23
|
psrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
25 |
1 16 17 18 11 10 19 20 21 23
|
psrdir |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
27 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
28 |
|
eqid |
⊢ ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
29 |
1 2 3 18 26 27 28 10
|
psr1cl |
⊢ ( 𝜑 → ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
30 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐼 ∈ 𝑉 ) |
31 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
33 |
1 30 31 18 26 27 28 10 11 32
|
psrlidm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ) |
34 |
1 30 31 18 26 27 28 10 11 32
|
psrridm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = 𝑥 ) |
35 |
4 5 6 9 15 22 24 25 29 33 34
|
isringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |