Step |
Hyp |
Ref |
Expression |
1 |
|
psrring.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrring.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
psr1cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
5 |
|
psr1cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
psr1cl.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
7 |
|
psr1cl.u |
⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
8 |
|
psr1cl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
9 6
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
11 |
9 5
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
12 |
10 11
|
ifcld |
⊢ ( 𝑅 ∈ Ring → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
15 |
14 7
|
fmptd |
⊢ ( 𝜑 → 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
16 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
17 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
18 |
4 17
|
rabex2 |
⊢ 𝐷 ∈ V |
19 |
16 18
|
elmap |
⊢ ( 𝑈 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
20 |
15 19
|
sylibr |
⊢ ( 𝜑 → 𝑈 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
21 |
1 9 4 8 2
|
psrbas |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
22 |
20 21
|
eleqtrrd |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |