Metamath Proof Explorer


Theorem psr1cl

Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrring.i ( 𝜑𝐼𝑉 )
psrring.r ( 𝜑𝑅 ∈ Ring )
psr1cl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psr1cl.z 0 = ( 0g𝑅 )
psr1cl.o 1 = ( 1r𝑅 )
psr1cl.u 𝑈 = ( 𝑥𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) )
psr1cl.b 𝐵 = ( Base ‘ 𝑆 )
Assertion psr1cl ( 𝜑𝑈𝐵 )

Proof

Step Hyp Ref Expression
1 psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrring.i ( 𝜑𝐼𝑉 )
3 psrring.r ( 𝜑𝑅 ∈ Ring )
4 psr1cl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 psr1cl.z 0 = ( 0g𝑅 )
6 psr1cl.o 1 = ( 1r𝑅 )
7 psr1cl.u 𝑈 = ( 𝑥𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) )
8 psr1cl.b 𝐵 = ( Base ‘ 𝑆 )
9 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
10 9 6 ringidcl ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) )
11 9 5 ring0cl ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) )
12 10 11 ifcld ( 𝑅 ∈ Ring → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) )
13 3 12 syl ( 𝜑 → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) )
14 13 adantr ( ( 𝜑𝑥𝐷 ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) )
15 14 7 fmptd ( 𝜑𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
16 fvex ( Base ‘ 𝑅 ) ∈ V
17 ovex ( ℕ0m 𝐼 ) ∈ V
18 4 17 rabex2 𝐷 ∈ V
19 16 18 elmap ( 𝑈 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
20 15 19 sylibr ( 𝜑𝑈 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) )
21 1 9 4 8 2 psrbas ( 𝜑𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) )
22 20 21 eleqtrrd ( 𝜑𝑈𝐵 )