| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrring.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrring.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | psr1cl.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | psr1cl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | psr1cl.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 7 |  | psr1cl.u | ⊢ 𝑈  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) | 
						
							| 8 |  | psr1cl.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 | 9 6 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 11 | 9 5 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 12 | 10 11 | ifcld | ⊢ ( 𝑅  ∈  Ring  →  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 15 | 14 7 | fmptd | ⊢ ( 𝜑  →  𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 16 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 17 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 18 | 4 17 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 19 | 16 18 | elmap | ⊢ ( 𝑈  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐷 )  ↔  𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 15 19 | sylibr | ⊢ ( 𝜑  →  𝑈  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐷 ) ) | 
						
							| 21 | 1 9 4 8 2 | psrbas | ⊢ ( 𝜑  →  𝐵  =  ( ( Base ‘ 𝑅 )  ↑m  𝐷 ) ) | 
						
							| 22 | 20 21 | eleqtrrd | ⊢ ( 𝜑  →  𝑈  ∈  𝐵 ) |