| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrring.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psrring.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
psrring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
psrass.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 5 |
|
psrass.t |
⊢ × = ( .r ‘ 𝑆 ) |
| 6 |
|
psrass.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 7 |
|
psrass.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
psrass.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
|
psrass.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
1 6 5 3 7 8
|
psrmulcl |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 12 |
1 6 5 3 11 9
|
psrmulcl |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) ∈ 𝐵 ) |
| 13 |
1 10 4 6 12
|
psrelbas |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 14 |
13
|
ffnd |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) Fn 𝐷 ) |
| 15 |
1 6 5 3 8 9
|
psrmulcl |
⊢ ( 𝜑 → ( 𝑌 × 𝑍 ) ∈ 𝐵 ) |
| 16 |
1 6 5 3 7 15
|
psrmulcl |
⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) ∈ 𝐵 ) |
| 17 |
1 10 4 6 16
|
psrelbas |
⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 |
17
|
ffnd |
⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) Fn 𝐷 ) |
| 19 |
|
eqid |
⊢ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } = { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 21 |
3
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 23 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 24 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑅 ∈ Ring ) |
| 25 |
1 10 4 6 7
|
psrelbas |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 28 |
|
breq1 |
⊢ ( 𝑔 = 𝑗 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑗 ∘r ≤ 𝑥 ) ) |
| 29 |
28
|
elrab |
⊢ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 30 |
27 29
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 31 |
30
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ 𝐷 ) |
| 32 |
26 31
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
1 10 4 6 8
|
psrelbas |
⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 35 |
34
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 36 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) |
| 37 |
|
breq1 |
⊢ ( ℎ = 𝑛 → ( ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ↔ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 38 |
37
|
elrab |
⊢ ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 39 |
36 38
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑛 ∈ 𝐷 ∧ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 40 |
39
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 ∈ 𝐷 ) |
| 41 |
35 40
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑌 ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 42 |
1 10 4 6 9
|
psrelbas |
⊢ ( 𝜑 → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 43 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) |
| 45 |
4
|
psrbagf |
⊢ ( 𝑗 ∈ 𝐷 → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 46 |
31 45
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 47 |
30
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∘r ≤ 𝑥 ) |
| 48 |
4
|
psrbagcon |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑗 : 𝐼 ⟶ ℕ0 ∧ 𝑗 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 49 |
44 46 47 48
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 50 |
49
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 52 |
4
|
psrbagf |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 : 𝐼 ⟶ ℕ0 ) |
| 53 |
40 52
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 : 𝐼 ⟶ ℕ0 ) |
| 54 |
39
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) |
| 55 |
4
|
psrbagcon |
⊢ ( ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ 𝑛 : 𝐼 ⟶ ℕ0 ∧ 𝑛 ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) → ( ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 56 |
51 53 54 55
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∘r ≤ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 57 |
56
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ∈ 𝐷 ) |
| 58 |
43 57
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 |
10 23 24 41 58
|
ringcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 60 |
10 23 24 33 59
|
ringcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 61 |
60
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∧ 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( 𝑌 ‘ 𝑛 ) = ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) |
| 63 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) = ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) = ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) |
| 65 |
62 64
|
oveq12d |
⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) = ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) |
| 66 |
65
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 ∘f − 𝑗 ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 67 |
4 19 20 10 22 61 66
|
psrass1lem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) ) ) |
| 68 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 ∈ 𝐵 ) |
| 69 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 ∈ 𝐵 ) |
| 70 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 71 |
|
breq1 |
⊢ ( 𝑔 = 𝑘 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑘 ∘r ≤ 𝑥 ) ) |
| 72 |
71
|
elrab |
⊢ ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 73 |
70 72
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 74 |
73
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ 𝐷 ) |
| 75 |
1 6 23 5 4 68 69 74
|
psrmulval |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 76 |
75
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 77 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 78 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ Ring ) |
| 79 |
4
|
psrbaglefi |
⊢ ( 𝑘 ∈ 𝐷 → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ∈ Fin ) |
| 80 |
74 79
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ∈ Fin ) |
| 81 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 82 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) |
| 83 |
4
|
psrbagf |
⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 84 |
74 83
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 85 |
73
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∘r ≤ 𝑥 ) |
| 86 |
4
|
psrbagcon |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ∧ 𝑘 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 87 |
82 84 85 86
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 88 |
87
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ) |
| 89 |
81 88
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 90 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 91 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 92 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) |
| 93 |
|
breq1 |
⊢ ( ℎ = 𝑗 → ( ℎ ∘r ≤ 𝑘 ↔ 𝑗 ∘r ≤ 𝑘 ) ) |
| 94 |
93
|
elrab |
⊢ ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↔ ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑘 ) ) |
| 95 |
92 94
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑘 ) ) |
| 96 |
95
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 ∈ 𝐷 ) |
| 97 |
91 96
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 98 |
34
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 99 |
74
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) |
| 100 |
96 45
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 101 |
95
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 ∘r ≤ 𝑘 ) |
| 102 |
4
|
psrbagcon |
⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑗 : 𝐼 ⟶ ℕ0 ∧ 𝑗 ∘r ≤ 𝑘 ) → ( ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑘 ∘f − 𝑗 ) ∘r ≤ 𝑘 ) ) |
| 103 |
99 100 101 102
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑘 ∘f − 𝑗 ) ∘r ≤ 𝑘 ) ) |
| 104 |
103
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 105 |
98 104
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 106 |
10 23 90 97 105
|
ringcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 107 |
|
eqid |
⊢ ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) = ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) |
| 108 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
| 109 |
108
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 110 |
107 80 106 109
|
fsuppmptdm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 111 |
10 77 23 78 80 89 106 110
|
gsummulc1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 112 |
89
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 113 |
10 23
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑋 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 114 |
90 97 105 112 113
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 115 |
4
|
psrbagf |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 116 |
115
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 117 |
116
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ) |
| 118 |
84
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 119 |
118
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
| 120 |
100
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) |
| 121 |
|
nn0cn |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑥 ‘ 𝑧 ) ∈ ℂ ) |
| 122 |
|
nn0cn |
⊢ ( ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑘 ‘ 𝑧 ) ∈ ℂ ) |
| 123 |
|
nn0cn |
⊢ ( ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) |
| 124 |
|
nnncan2 |
⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) |
| 125 |
121 122 123 124
|
syl3an |
⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) |
| 126 |
117 119 120 125
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) |
| 127 |
126
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) ) |
| 128 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝐼 ∈ 𝑉 ) |
| 129 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) |
| 130 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) |
| 131 |
116
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑥 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 132 |
100
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑗 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 133 |
128 117 120 131 132
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 134 |
118
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → 𝑘 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) ) |
| 135 |
128 119 120 134 132
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 136 |
128 129 130 133 135
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( ( 𝑘 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) ) |
| 137 |
128 117 119 131 134
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f − 𝑘 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑘 ‘ 𝑧 ) ) ) ) |
| 138 |
127 136 137
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) = ( 𝑥 ∘f − 𝑘 ) ) |
| 139 |
138
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) = ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) |
| 140 |
139
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) = ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 141 |
140
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 142 |
114 141
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ) → ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 143 |
142
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 144 |
143
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) |
| 145 |
76 111 144
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) |
| 146 |
145
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) ) |
| 147 |
146
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) ) ) ) |
| 148 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 ∈ 𝐵 ) |
| 149 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑍 ∈ 𝐵 ) |
| 150 |
1 6 23 5 4 148 149 50
|
psrmulval |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) = ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) |
| 151 |
150
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) |
| 152 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ Ring ) |
| 153 |
4
|
psrbaglefi |
⊢ ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ Fin ) |
| 154 |
50 153
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ Fin ) |
| 155 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 156 |
4 155
|
rab2ex |
⊢ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ V |
| 157 |
156
|
mptex |
⊢ ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V |
| 158 |
|
funmpt |
⊢ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) |
| 159 |
157 158 108
|
3pm3.2i |
⊢ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
| 160 |
159
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ) |
| 161 |
|
suppssdm |
⊢ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) |
| 162 |
|
eqid |
⊢ ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) = ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) |
| 163 |
162
|
dmmptss |
⊢ dom ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } |
| 164 |
161 163
|
sstri |
⊢ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } |
| 165 |
164
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) |
| 166 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ∈ Fin ∧ ( ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ) ) → ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 167 |
160 154 165 166
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 168 |
10 77 23 152 154 32 59 167
|
gsummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) = ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) |
| 169 |
151 168
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) |
| 170 |
169
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) ) |
| 171 |
170
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ ( 𝑥 ∘f − 𝑗 ) } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥 ∘f − 𝑗 ) ∘f − 𝑛 ) ) ) ) ) ) ) ) ) |
| 172 |
67 147 171
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 173 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 174 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ∈ 𝐵 ) |
| 175 |
1 6 23 5 4 173 174 20
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) |
| 176 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑋 ∈ 𝐵 ) |
| 177 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑌 × 𝑍 ) ∈ 𝐵 ) |
| 178 |
1 6 23 5 4 176 177 20
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 179 |
172 175 178
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) ) |
| 180 |
14 18 179
|
eqfnfvd |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) = ( 𝑋 × ( 𝑌 × 𝑍 ) ) ) |