Metamath Proof Explorer


Theorem psrass1

Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015)

Ref Expression
Hypotheses psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrring.i ( 𝜑𝐼𝑉 )
psrring.r ( 𝜑𝑅 ∈ Ring )
psrass.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psrass.t × = ( .r𝑆 )
psrass.b 𝐵 = ( Base ‘ 𝑆 )
psrass.x ( 𝜑𝑋𝐵 )
psrass.y ( 𝜑𝑌𝐵 )
psrass.z ( 𝜑𝑍𝐵 )
Assertion psrass1 ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) = ( 𝑋 × ( 𝑌 × 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrring.i ( 𝜑𝐼𝑉 )
3 psrring.r ( 𝜑𝑅 ∈ Ring )
4 psrass.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 psrass.t × = ( .r𝑆 )
6 psrass.b 𝐵 = ( Base ‘ 𝑆 )
7 psrass.x ( 𝜑𝑋𝐵 )
8 psrass.y ( 𝜑𝑌𝐵 )
9 psrass.z ( 𝜑𝑍𝐵 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 1 6 5 3 7 8 psrmulcl ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 )
12 1 6 5 3 11 9 psrmulcl ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) ∈ 𝐵 )
13 1 10 4 6 12 psrelbas ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
14 13 ffnd ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) Fn 𝐷 )
15 1 6 5 3 8 9 psrmulcl ( 𝜑 → ( 𝑌 × 𝑍 ) ∈ 𝐵 )
16 1 6 5 3 7 15 psrmulcl ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) ∈ 𝐵 )
17 1 10 4 6 16 psrelbas ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
18 17 ffnd ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) Fn 𝐷 )
19 eqid { 𝑔𝐷𝑔r𝑥 } = { 𝑔𝐷𝑔r𝑥 }
20 2 adantr ( ( 𝜑𝑥𝐷 ) → 𝐼𝑉 )
21 simpr ( ( 𝜑𝑥𝐷 ) → 𝑥𝐷 )
22 ringcmn ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd )
23 3 22 syl ( 𝜑𝑅 ∈ CMnd )
24 23 adantr ( ( 𝜑𝑥𝐷 ) → 𝑅 ∈ CMnd )
25 3 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑅 ∈ Ring )
26 25 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑅 ∈ Ring )
27 1 10 4 6 7 psrelbas ( 𝜑𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
28 27 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
29 simpr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } )
30 breq1 ( 𝑔 = 𝑗 → ( 𝑔r𝑥𝑗r𝑥 ) )
31 30 elrab ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↔ ( 𝑗𝐷𝑗r𝑥 ) )
32 29 31 sylib ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑗𝐷𝑗r𝑥 ) )
33 32 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗𝐷 )
34 28 33 ffvelrnd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) )
35 34 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) )
36 1 10 4 6 8 psrelbas ( 𝜑𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
37 36 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
38 simpr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } )
39 breq1 ( = 𝑛 → ( r ≤ ( 𝑥f𝑗 ) ↔ 𝑛r ≤ ( 𝑥f𝑗 ) ) )
40 39 elrab ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↔ ( 𝑛𝐷𝑛r ≤ ( 𝑥f𝑗 ) ) )
41 38 40 sylib ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑛𝐷𝑛r ≤ ( 𝑥f𝑗 ) ) )
42 41 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛𝐷 )
43 37 42 ffvelrnd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑌𝑛 ) ∈ ( Base ‘ 𝑅 ) )
44 1 10 4 6 9 psrelbas ( 𝜑𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
45 44 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
46 2 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝐼𝑉 )
47 46 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝐼𝑉 )
48 simplr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑥𝐷 )
49 4 psrbagf ( ( 𝐼𝑉𝑗𝐷 ) → 𝑗 : 𝐼 ⟶ ℕ0 )
50 46 33 49 syl2anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗 : 𝐼 ⟶ ℕ0 )
51 32 simprd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗r𝑥 )
52 4 psrbagcon ( ( 𝐼𝑉 ∧ ( 𝑥𝐷𝑗 : 𝐼 ⟶ ℕ0𝑗r𝑥 ) ) → ( ( 𝑥f𝑗 ) ∈ 𝐷 ∧ ( 𝑥f𝑗 ) ∘r𝑥 ) )
53 46 48 50 51 52 syl13anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑥f𝑗 ) ∈ 𝐷 ∧ ( 𝑥f𝑗 ) ∘r𝑥 ) )
54 53 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑥f𝑗 ) ∈ 𝐷 )
55 54 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑥f𝑗 ) ∈ 𝐷 )
56 4 psrbagf ( ( 𝐼𝑉𝑛𝐷 ) → 𝑛 : 𝐼 ⟶ ℕ0 )
57 47 42 56 syl2anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛 : 𝐼 ⟶ ℕ0 )
58 41 simprd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛r ≤ ( 𝑥f𝑗 ) )
59 4 psrbagcon ( ( 𝐼𝑉 ∧ ( ( 𝑥f𝑗 ) ∈ 𝐷𝑛 : 𝐼 ⟶ ℕ0𝑛r ≤ ( 𝑥f𝑗 ) ) ) → ( ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∘r ≤ ( 𝑥f𝑗 ) ) )
60 47 55 57 58 59 syl13anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∘r ≤ ( 𝑥f𝑗 ) ) )
61 60 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∈ 𝐷 )
62 45 61 ffvelrnd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ∈ ( Base ‘ 𝑅 ) )
63 eqid ( .r𝑅 ) = ( .r𝑅 )
64 10 63 ringcl ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝑛 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) )
65 26 43 62 64 syl3anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) )
66 10 63 ringcl ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
67 26 35 65 66 syl3anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
68 67 anasss ( ( ( 𝜑𝑥𝐷 ) ∧ ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
69 fveq2 ( 𝑛 = ( 𝑘f𝑗 ) → ( 𝑌𝑛 ) = ( 𝑌 ‘ ( 𝑘f𝑗 ) ) )
70 oveq2 ( 𝑛 = ( 𝑘f𝑗 ) → ( ( 𝑥f𝑗 ) ∘f𝑛 ) = ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) )
71 70 fveq2d ( 𝑛 = ( 𝑘f𝑗 ) → ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) = ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) )
72 69 71 oveq12d ( 𝑛 = ( 𝑘f𝑗 ) → ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) = ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) )
73 72 oveq2d ( 𝑛 = ( 𝑘f𝑗 ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) )
74 4 19 20 21 10 24 68 73 psrass1lem ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) ) ) )
75 7 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑋𝐵 )
76 8 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑌𝐵 )
77 simpr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } )
78 breq1 ( 𝑔 = 𝑘 → ( 𝑔r𝑥𝑘r𝑥 ) )
79 78 elrab ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↔ ( 𝑘𝐷𝑘r𝑥 ) )
80 77 79 sylib ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑘𝐷𝑘r𝑥 ) )
81 80 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘𝐷 )
82 1 6 63 5 4 75 76 81 psrmulval ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) ) )
83 82 oveq1d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) )
84 eqid ( 0g𝑅 ) = ( 0g𝑅 )
85 eqid ( +g𝑅 ) = ( +g𝑅 )
86 3 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑅 ∈ Ring )
87 2 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝐼𝑉 )
88 4 psrbaglefi ( ( 𝐼𝑉𝑘𝐷 ) → { 𝐷r𝑘 } ∈ Fin )
89 87 81 88 syl2anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → { 𝐷r𝑘 } ∈ Fin )
90 44 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
91 simplr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑥𝐷 )
92 4 psrbagf ( ( 𝐼𝑉𝑘𝐷 ) → 𝑘 : 𝐼 ⟶ ℕ0 )
93 87 81 92 syl2anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
94 80 simprd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘r𝑥 )
95 4 psrbagcon ( ( 𝐼𝑉 ∧ ( 𝑥𝐷𝑘 : 𝐼 ⟶ ℕ0𝑘r𝑥 ) ) → ( ( 𝑥f𝑘 ) ∈ 𝐷 ∧ ( 𝑥f𝑘 ) ∘r𝑥 ) )
96 87 91 93 94 95 syl13anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑥f𝑘 ) ∈ 𝐷 ∧ ( 𝑥f𝑘 ) ∘r𝑥 ) )
97 96 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑥f𝑘 ) ∈ 𝐷 )
98 90 97 ffvelrnd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ∈ ( Base ‘ 𝑅 ) )
99 86 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑅 ∈ Ring )
100 27 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
101 simpr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗 ∈ { 𝐷r𝑘 } )
102 breq1 ( = 𝑗 → ( r𝑘𝑗r𝑘 ) )
103 102 elrab ( 𝑗 ∈ { 𝐷r𝑘 } ↔ ( 𝑗𝐷𝑗r𝑘 ) )
104 101 103 sylib ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑗𝐷𝑗r𝑘 ) )
105 104 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗𝐷 )
106 100 105 ffvelrnd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) )
107 36 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
108 87 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝐼𝑉 )
109 81 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑘𝐷 )
110 108 105 49 syl2anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗 : 𝐼 ⟶ ℕ0 )
111 104 simprd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗r𝑘 )
112 4 psrbagcon ( ( 𝐼𝑉 ∧ ( 𝑘𝐷𝑗 : 𝐼 ⟶ ℕ0𝑗r𝑘 ) ) → ( ( 𝑘f𝑗 ) ∈ 𝐷 ∧ ( 𝑘f𝑗 ) ∘r𝑘 ) )
113 108 109 110 111 112 syl13anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑘f𝑗 ) ∈ 𝐷 ∧ ( 𝑘f𝑗 ) ∘r𝑘 ) )
114 113 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑘f𝑗 ) ∈ 𝐷 )
115 107 114 ffvelrnd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ∈ ( Base ‘ 𝑅 ) )
116 10 63 ringcl ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) )
117 99 106 115 116 syl3anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) )
118 eqid ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) = ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) )
119 fvex ( 0g𝑅 ) ∈ V
120 119 a1i ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 0g𝑅 ) ∈ V )
121 118 89 117 120 fsuppmptdm ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) finSupp ( 0g𝑅 ) )
122 10 84 85 63 86 89 98 117 121 gsummulc1 ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) )
123 98 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ∈ ( Base ‘ 𝑅 ) )
124 10 63 ringass ( ( 𝑅 ∈ Ring ∧ ( ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) )
125 99 106 115 123 124 syl13anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) )
126 4 psrbagf ( ( 𝐼𝑉𝑥𝐷 ) → 𝑥 : 𝐼 ⟶ ℕ0 )
127 2 126 sylan ( ( 𝜑𝑥𝐷 ) → 𝑥 : 𝐼 ⟶ ℕ0 )
128 127 ad2antrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
129 128 ffvelrnda ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( 𝑥𝑧 ) ∈ ℕ0 )
130 93 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
131 130 ffvelrnda ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( 𝑘𝑧 ) ∈ ℕ0 )
132 110 ffvelrnda ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( 𝑗𝑧 ) ∈ ℕ0 )
133 nn0cn ( ( 𝑥𝑧 ) ∈ ℕ0 → ( 𝑥𝑧 ) ∈ ℂ )
134 nn0cn ( ( 𝑘𝑧 ) ∈ ℕ0 → ( 𝑘𝑧 ) ∈ ℂ )
135 nn0cn ( ( 𝑗𝑧 ) ∈ ℕ0 → ( 𝑗𝑧 ) ∈ ℂ )
136 nnncan2 ( ( ( 𝑥𝑧 ) ∈ ℂ ∧ ( 𝑘𝑧 ) ∈ ℂ ∧ ( 𝑗𝑧 ) ∈ ℂ ) → ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) = ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) )
137 133 134 135 136 syl3an ( ( ( 𝑥𝑧 ) ∈ ℕ0 ∧ ( 𝑘𝑧 ) ∈ ℕ0 ∧ ( 𝑗𝑧 ) ∈ ℕ0 ) → ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) = ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) )
138 129 131 132 137 syl3anc ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) = ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) )
139 138 mpteq2dva ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑧𝐼 ↦ ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) ) = ( 𝑧𝐼 ↦ ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) ) )
140 ovexd ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) ∈ V )
141 ovexd ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ∈ V )
142 128 feqmptd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑥 = ( 𝑧𝐼 ↦ ( 𝑥𝑧 ) ) )
143 110 feqmptd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗 = ( 𝑧𝐼 ↦ ( 𝑗𝑧 ) ) )
144 108 129 132 142 143 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑥f𝑗 ) = ( 𝑧𝐼 ↦ ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) ) )
145 130 feqmptd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑘 = ( 𝑧𝐼 ↦ ( 𝑘𝑧 ) ) )
146 108 131 132 145 143 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑘f𝑗 ) = ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) )
147 108 140 141 144 146 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) = ( 𝑧𝐼 ↦ ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) ) )
148 108 129 131 142 145 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑥f𝑘 ) = ( 𝑧𝐼 ↦ ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) ) )
149 139 147 148 3eqtr4d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) = ( 𝑥f𝑘 ) )
150 149 fveq2d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) = ( 𝑍 ‘ ( 𝑥f𝑘 ) ) )
151 150 oveq2d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) = ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) )
152 151 oveq2d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) )
153 125 152 eqtr4d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) )
154 153 mpteq2dva ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) = ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) )
155 154 oveq2d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) )
156 83 122 155 3eqtr2d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) )
157 156 mpteq2dva ( ( 𝜑𝑥𝐷 ) → ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) ) )
158 157 oveq2d ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) ) ) )
159 8 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑌𝐵 )
160 9 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑍𝐵 )
161 1 6 63 5 4 159 160 54 psrmulval ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) = ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) )
162 161 oveq2d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) )
163 4 psrbaglefi ( ( 𝐼𝑉 ∧ ( 𝑥f𝑗 ) ∈ 𝐷 ) → { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ Fin )
164 46 54 163 syl2anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ Fin )
165 ovex ( ℕ0m 𝐼 ) ∈ V
166 4 165 rab2ex { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ V
167 166 mptex ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V
168 funmpt Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) )
169 167 168 119 3pm3.2i ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V )
170 169 a1i ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V ) )
171 suppssdm ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ dom ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) )
172 eqid ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) = ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) )
173 172 dmmptss dom ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) }
174 171 173 sstri ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) }
175 174 a1i ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) } )
176 suppssfifsupp ( ( ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V ) ∧ ( { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ Fin ∧ ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) ) → ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) finSupp ( 0g𝑅 ) )
177 170 164 175 176 syl12anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) finSupp ( 0g𝑅 ) )
178 10 84 85 63 25 164 34 65 177 gsummulc2 ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) )
179 162 178 eqtr4d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) = ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) )
180 179 mpteq2dva ( ( 𝜑𝑥𝐷 ) → ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) = ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) ) )
181 180 oveq2d ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) ) ) )
182 74 158 181 3eqtr4d ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) ) )
183 11 adantr ( ( 𝜑𝑥𝐷 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 )
184 9 adantr ( ( 𝜑𝑥𝐷 ) → 𝑍𝐵 )
185 1 6 63 5 4 183 184 21 psrmulval ( ( 𝜑𝑥𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) )
186 7 adantr ( ( 𝜑𝑥𝐷 ) → 𝑋𝐵 )
187 15 adantr ( ( 𝜑𝑥𝐷 ) → ( 𝑌 × 𝑍 ) ∈ 𝐵 )
188 1 6 63 5 4 186 187 21 psrmulval ( ( 𝜑𝑥𝐷 ) → ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) ) )
189 182 185 188 3eqtr4d ( ( 𝜑𝑥𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) )
190 14 18 189 eqfnfvd ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) = ( 𝑋 × ( 𝑌 × 𝑍 ) ) )