Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
1
|
psrbagf |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
3 |
2
|
ffnd |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼 ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 Fn 𝐼 ) |
5 |
|
simp2 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 : 𝐼 ⟶ ℕ0 ) |
6 |
5
|
ffnd |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 Fn 𝐼 ) |
7 |
|
id |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷 ) |
8 |
7 3
|
fndmexd |
⊢ ( 𝐹 ∈ 𝐷 → 𝐼 ∈ V ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐼 ∈ V ) |
10 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
11 |
4 6 9 9 10
|
offn |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) Fn 𝐼 ) |
12 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
13 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
14 |
4 6 9 9 10 12 13
|
ofval |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
15 |
|
simp3 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐺 ∘r ≤ 𝐹 ) |
16 |
6 4 9 9 10 13 12
|
ofrfval |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐺 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
15 16
|
mpbid |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
18 |
17
|
r19.21bi |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
19 |
5
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℕ0 ) |
20 |
2
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
21 |
20
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℕ0 ) |
22 |
|
nn0sub |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℕ0 ) ) |
23 |
19 21 22
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℕ0 ) ) |
24 |
18 23
|
mpbid |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℕ0 ) |
25 |
14 24
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
26 |
25
|
ralrimiva |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
27 |
|
ffnfv |
⊢ ( ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ↔ ( ( 𝐹 ∘f − 𝐺 ) Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) ) |
28 |
11 26 27
|
sylanbrc |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ) |
29 |
|
simp1 |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → 𝐹 ∈ 𝐷 ) |
30 |
1
|
psrbag |
⊢ ( 𝐼 ∈ V → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
31 |
9 30
|
syl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
32 |
29 31
|
mpbid |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
33 |
32
|
simprd |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ 𝐹 “ ℕ ) ∈ Fin ) |
34 |
19
|
nn0ge0d |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( 𝐺 ‘ 𝑥 ) ) |
35 |
21
|
nn0red |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
36 |
19
|
nn0red |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
37 |
35 36
|
subge02d |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( 0 ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
38 |
34 37
|
mpbid |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
39 |
38
|
ralrimiva |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
40 |
11 4 9 9 10 14 12
|
ofrfval |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
41 |
39 40
|
mpbird |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ) |
42 |
1
|
psrbaglesupp |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ) → ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
43 |
29 28 41 42
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
44 |
33 43
|
ssfid |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ∈ Fin ) |
45 |
1
|
psrbag |
⊢ ( 𝐼 ∈ V → ( ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ↔ ( ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ∈ Fin ) ) ) |
46 |
9 45
|
syl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ↔ ( ( 𝐹 ∘f − 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ∘f − 𝐺 ) “ ℕ ) ∈ Fin ) ) ) |
47 |
28 44 46
|
mpbir2and |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ) |
48 |
47 41
|
jca |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 : 𝐼 ⟶ ℕ0 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝐺 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝐺 ) ∘r ≤ 𝐹 ) ) |