Metamath Proof Explorer


Theorem psrass1

Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psrass.d D=f0I|f-1Fin
psrass.t ×˙=S
psrass.b B=BaseS
psrass.x φXB
psrass.y φYB
psrass.z φZB
Assertion psrass1 φX×˙Y×˙Z=X×˙Y×˙Z

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psrass.d D=f0I|f-1Fin
5 psrass.t ×˙=S
6 psrass.b B=BaseS
7 psrass.x φXB
8 psrass.y φYB
9 psrass.z φZB
10 eqid BaseR=BaseR
11 1 6 5 3 7 8 psrmulcl φX×˙YB
12 1 6 5 3 11 9 psrmulcl φX×˙Y×˙ZB
13 1 10 4 6 12 psrelbas φX×˙Y×˙Z:DBaseR
14 13 ffnd φX×˙Y×˙ZFnD
15 1 6 5 3 8 9 psrmulcl φY×˙ZB
16 1 6 5 3 7 15 psrmulcl φX×˙Y×˙ZB
17 1 10 4 6 16 psrelbas φX×˙Y×˙Z:DBaseR
18 17 ffnd φX×˙Y×˙ZFnD
19 eqid gD|gfx=gD|gfx
20 simpr φxDxD
21 3 ringcmnd φRCMnd
22 21 adantr φxDRCMnd
23 eqid R=R
24 3 ad3antrrr φxDjgD|gfxnhD|hfxfjRRing
25 1 10 4 6 7 psrelbas φX:DBaseR
26 25 ad2antrr φxDjgD|gfxX:DBaseR
27 simpr φxDjgD|gfxjgD|gfx
28 breq1 g=jgfxjfx
29 28 elrab jgD|gfxjDjfx
30 27 29 sylib φxDjgD|gfxjDjfx
31 30 simpld φxDjgD|gfxjD
32 26 31 ffvelcdmd φxDjgD|gfxXjBaseR
33 32 adantr φxDjgD|gfxnhD|hfxfjXjBaseR
34 1 10 4 6 8 psrelbas φY:DBaseR
35 34 ad3antrrr φxDjgD|gfxnhD|hfxfjY:DBaseR
36 simpr φxDjgD|gfxnhD|hfxfjnhD|hfxfj
37 breq1 h=nhfxfjnfxfj
38 37 elrab nhD|hfxfjnDnfxfj
39 36 38 sylib φxDjgD|gfxnhD|hfxfjnDnfxfj
40 39 simpld φxDjgD|gfxnhD|hfxfjnD
41 35 40 ffvelcdmd φxDjgD|gfxnhD|hfxfjYnBaseR
42 1 10 4 6 9 psrelbas φZ:DBaseR
43 42 ad3antrrr φxDjgD|gfxnhD|hfxfjZ:DBaseR
44 simplr φxDjgD|gfxxD
45 4 psrbagf jDj:I0
46 31 45 syl φxDjgD|gfxj:I0
47 30 simprd φxDjgD|gfxjfx
48 4 psrbagcon xDj:I0jfxxfjDxfjfx
49 44 46 47 48 syl3anc φxDjgD|gfxxfjDxfjfx
50 49 simpld φxDjgD|gfxxfjD
51 50 adantr φxDjgD|gfxnhD|hfxfjxfjD
52 4 psrbagf nDn:I0
53 40 52 syl φxDjgD|gfxnhD|hfxfjn:I0
54 39 simprd φxDjgD|gfxnhD|hfxfjnfxfj
55 4 psrbagcon xfjDn:I0nfxfjxfjfnDxfjfnfxfj
56 51 53 54 55 syl3anc φxDjgD|gfxnhD|hfxfjxfjfnDxfjfnfxfj
57 56 simpld φxDjgD|gfxnhD|hfxfjxfjfnD
58 43 57 ffvelcdmd φxDjgD|gfxnhD|hfxfjZxfjfnBaseR
59 10 23 24 41 58 ringcld φxDjgD|gfxnhD|hfxfjYnRZxfjfnBaseR
60 10 23 24 33 59 ringcld φxDjgD|gfxnhD|hfxfjXjRYnRZxfjfnBaseR
61 60 anasss φxDjgD|gfxnhD|hfxfjXjRYnRZxfjfnBaseR
62 fveq2 n=kfjYn=Ykfj
63 oveq2 n=kfjxfjfn=xfjfkfj
64 63 fveq2d n=kfjZxfjfn=Zxfjfkfj
65 62 64 oveq12d n=kfjYnRZxfjfn=YkfjRZxfjfkfj
66 65 oveq2d n=kfjXjRYnRZxfjfn=XjRYkfjRZxfjfkfj
67 4 19 20 10 22 61 66 psrass1lem φxDRkgD|gfxRjhD|hfkXjRYkfjRZxfjfkfj=RjgD|gfxRnhD|hfxfjXjRYnRZxfjfn
68 7 ad2antrr φxDkgD|gfxXB
69 8 ad2antrr φxDkgD|gfxYB
70 simpr φxDkgD|gfxkgD|gfx
71 breq1 g=kgfxkfx
72 71 elrab kgD|gfxkDkfx
73 70 72 sylib φxDkgD|gfxkDkfx
74 73 simpld φxDkgD|gfxkD
75 1 6 23 5 4 68 69 74 psrmulval φxDkgD|gfxX×˙Yk=RjhD|hfkXjRYkfj
76 75 oveq1d φxDkgD|gfxX×˙YkRZxfk=RjhD|hfkXjRYkfjRZxfk
77 eqid 0R=0R
78 3 ad2antrr φxDkgD|gfxRRing
79 4 psrbaglefi kDhD|hfkFin
80 74 79 syl φxDkgD|gfxhD|hfkFin
81 42 ad2antrr φxDkgD|gfxZ:DBaseR
82 simplr φxDkgD|gfxxD
83 4 psrbagf kDk:I0
84 74 83 syl φxDkgD|gfxk:I0
85 73 simprd φxDkgD|gfxkfx
86 4 psrbagcon xDk:I0kfxxfkDxfkfx
87 82 84 85 86 syl3anc φxDkgD|gfxxfkDxfkfx
88 87 simpld φxDkgD|gfxxfkD
89 81 88 ffvelcdmd φxDkgD|gfxZxfkBaseR
90 3 ad3antrrr φxDkgD|gfxjhD|hfkRRing
91 25 ad3antrrr φxDkgD|gfxjhD|hfkX:DBaseR
92 simpr φxDkgD|gfxjhD|hfkjhD|hfk
93 breq1 h=jhfkjfk
94 93 elrab jhD|hfkjDjfk
95 92 94 sylib φxDkgD|gfxjhD|hfkjDjfk
96 95 simpld φxDkgD|gfxjhD|hfkjD
97 91 96 ffvelcdmd φxDkgD|gfxjhD|hfkXjBaseR
98 34 ad3antrrr φxDkgD|gfxjhD|hfkY:DBaseR
99 74 adantr φxDkgD|gfxjhD|hfkkD
100 96 45 syl φxDkgD|gfxjhD|hfkj:I0
101 95 simprd φxDkgD|gfxjhD|hfkjfk
102 4 psrbagcon kDj:I0jfkkfjDkfjfk
103 99 100 101 102 syl3anc φxDkgD|gfxjhD|hfkkfjDkfjfk
104 103 simpld φxDkgD|gfxjhD|hfkkfjD
105 98 104 ffvelcdmd φxDkgD|gfxjhD|hfkYkfjBaseR
106 10 23 90 97 105 ringcld φxDkgD|gfxjhD|hfkXjRYkfjBaseR
107 eqid jhD|hfkXjRYkfj=jhD|hfkXjRYkfj
108 fvex 0RV
109 108 a1i φxDkgD|gfx0RV
110 107 80 106 109 fsuppmptdm φxDkgD|gfxfinSupp0RjhD|hfkXjRYkfj
111 10 77 23 78 80 89 106 110 gsummulc1 φxDkgD|gfxRjhD|hfkXjRYkfjRZxfk=RjhD|hfkXjRYkfjRZxfk
112 89 adantr φxDkgD|gfxjhD|hfkZxfkBaseR
113 10 23 ringass RRingXjBaseRYkfjBaseRZxfkBaseRXjRYkfjRZxfk=XjRYkfjRZxfk
114 90 97 105 112 113 syl13anc φxDkgD|gfxjhD|hfkXjRYkfjRZxfk=XjRYkfjRZxfk
115 4 psrbagf xDx:I0
116 115 ad3antlr φxDkgD|gfxjhD|hfkx:I0
117 116 ffvelcdmda φxDkgD|gfxjhD|hfkzIxz0
118 84 adantr φxDkgD|gfxjhD|hfkk:I0
119 118 ffvelcdmda φxDkgD|gfxjhD|hfkzIkz0
120 100 ffvelcdmda φxDkgD|gfxjhD|hfkzIjz0
121 nn0cn xz0xz
122 nn0cn kz0kz
123 nn0cn jz0jz
124 nnncan2 xzkzjzxz-jz-kzjz=xzkz
125 121 122 123 124 syl3an xz0kz0jz0xz-jz-kzjz=xzkz
126 117 119 120 125 syl3anc φxDkgD|gfxjhD|hfkzIxz-jz-kzjz=xzkz
127 126 mpteq2dva φxDkgD|gfxjhD|hfkzIxz-jz-kzjz=zIxzkz
128 2 ad3antrrr φxDkgD|gfxjhD|hfkIV
129 ovexd φxDkgD|gfxjhD|hfkzIxzjzV
130 ovexd φxDkgD|gfxjhD|hfkzIkzjzV
131 116 feqmptd φxDkgD|gfxjhD|hfkx=zIxz
132 100 feqmptd φxDkgD|gfxjhD|hfkj=zIjz
133 128 117 120 131 132 offval2 φxDkgD|gfxjhD|hfkxfj=zIxzjz
134 118 feqmptd φxDkgD|gfxjhD|hfkk=zIkz
135 128 119 120 134 132 offval2 φxDkgD|gfxjhD|hfkkfj=zIkzjz
136 128 129 130 133 135 offval2 φxDkgD|gfxjhD|hfkxfjfkfj=zIxz-jz-kzjz
137 128 117 119 131 134 offval2 φxDkgD|gfxjhD|hfkxfk=zIxzkz
138 127 136 137 3eqtr4d φxDkgD|gfxjhD|hfkxfjfkfj=xfk
139 138 fveq2d φxDkgD|gfxjhD|hfkZxfjfkfj=Zxfk
140 139 oveq2d φxDkgD|gfxjhD|hfkYkfjRZxfjfkfj=YkfjRZxfk
141 140 oveq2d φxDkgD|gfxjhD|hfkXjRYkfjRZxfjfkfj=XjRYkfjRZxfk
142 114 141 eqtr4d φxDkgD|gfxjhD|hfkXjRYkfjRZxfk=XjRYkfjRZxfjfkfj
143 142 mpteq2dva φxDkgD|gfxjhD|hfkXjRYkfjRZxfk=jhD|hfkXjRYkfjRZxfjfkfj
144 143 oveq2d φxDkgD|gfxRjhD|hfkXjRYkfjRZxfk=RjhD|hfkXjRYkfjRZxfjfkfj
145 76 111 144 3eqtr2d φxDkgD|gfxX×˙YkRZxfk=RjhD|hfkXjRYkfjRZxfjfkfj
146 145 mpteq2dva φxDkgD|gfxX×˙YkRZxfk=kgD|gfxRjhD|hfkXjRYkfjRZxfjfkfj
147 146 oveq2d φxDRkgD|gfxX×˙YkRZxfk=RkgD|gfxRjhD|hfkXjRYkfjRZxfjfkfj
148 8 ad2antrr φxDjgD|gfxYB
149 9 ad2antrr φxDjgD|gfxZB
150 1 6 23 5 4 148 149 50 psrmulval φxDjgD|gfxY×˙Zxfj=RnhD|hfxfjYnRZxfjfn
151 150 oveq2d φxDjgD|gfxXjRY×˙Zxfj=XjRRnhD|hfxfjYnRZxfjfn
152 3 ad2antrr φxDjgD|gfxRRing
153 4 psrbaglefi xfjDhD|hfxfjFin
154 50 153 syl φxDjgD|gfxhD|hfxfjFin
155 ovex 0IV
156 4 155 rab2ex hD|hfxfjV
157 156 mptex nhD|hfxfjYnRZxfjfnV
158 funmpt FunnhD|hfxfjYnRZxfjfn
159 157 158 108 3pm3.2i nhD|hfxfjYnRZxfjfnVFunnhD|hfxfjYnRZxfjfn0RV
160 159 a1i φxDjgD|gfxnhD|hfxfjYnRZxfjfnVFunnhD|hfxfjYnRZxfjfn0RV
161 suppssdm nhD|hfxfjYnRZxfjfnsupp0RdomnhD|hfxfjYnRZxfjfn
162 eqid nhD|hfxfjYnRZxfjfn=nhD|hfxfjYnRZxfjfn
163 162 dmmptss domnhD|hfxfjYnRZxfjfnhD|hfxfj
164 161 163 sstri nhD|hfxfjYnRZxfjfnsupp0RhD|hfxfj
165 164 a1i φxDjgD|gfxnhD|hfxfjYnRZxfjfnsupp0RhD|hfxfj
166 suppssfifsupp nhD|hfxfjYnRZxfjfnVFunnhD|hfxfjYnRZxfjfn0RVhD|hfxfjFinnhD|hfxfjYnRZxfjfnsupp0RhD|hfxfjfinSupp0RnhD|hfxfjYnRZxfjfn
167 160 154 165 166 syl12anc φxDjgD|gfxfinSupp0RnhD|hfxfjYnRZxfjfn
168 10 77 23 152 154 32 59 167 gsummulc2 φxDjgD|gfxRnhD|hfxfjXjRYnRZxfjfn=XjRRnhD|hfxfjYnRZxfjfn
169 151 168 eqtr4d φxDjgD|gfxXjRY×˙Zxfj=RnhD|hfxfjXjRYnRZxfjfn
170 169 mpteq2dva φxDjgD|gfxXjRY×˙Zxfj=jgD|gfxRnhD|hfxfjXjRYnRZxfjfn
171 170 oveq2d φxDRjgD|gfxXjRY×˙Zxfj=RjgD|gfxRnhD|hfxfjXjRYnRZxfjfn
172 67 147 171 3eqtr4d φxDRkgD|gfxX×˙YkRZxfk=RjgD|gfxXjRY×˙Zxfj
173 11 adantr φxDX×˙YB
174 9 adantr φxDZB
175 1 6 23 5 4 173 174 20 psrmulval φxDX×˙Y×˙Zx=RkgD|gfxX×˙YkRZxfk
176 7 adantr φxDXB
177 15 adantr φxDY×˙ZB
178 1 6 23 5 4 176 177 20 psrmulval φxDX×˙Y×˙Zx=RjgD|gfxXjRY×˙Zxfj
179 172 175 178 3eqtr4d φxDX×˙Y×˙Zx=X×˙Y×˙Zx
180 14 18 179 eqfnfvd φX×˙Y×˙Z=X×˙Y×˙Z