Metamath Proof Explorer


Theorem psrass1

Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
psrass.d D = f 0 I | f -1 Fin
psrass.t × ˙ = S
psrass.b B = Base S
psrass.x φ X B
psrass.y φ Y B
psrass.z φ Z B
Assertion psrass1 φ X × ˙ Y × ˙ Z = X × ˙ Y × ˙ Z

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 psrass.d D = f 0 I | f -1 Fin
5 psrass.t × ˙ = S
6 psrass.b B = Base S
7 psrass.x φ X B
8 psrass.y φ Y B
9 psrass.z φ Z B
10 eqid Base R = Base R
11 1 6 5 3 7 8 psrmulcl φ X × ˙ Y B
12 1 6 5 3 11 9 psrmulcl φ X × ˙ Y × ˙ Z B
13 1 10 4 6 12 psrelbas φ X × ˙ Y × ˙ Z : D Base R
14 13 ffnd φ X × ˙ Y × ˙ Z Fn D
15 1 6 5 3 8 9 psrmulcl φ Y × ˙ Z B
16 1 6 5 3 7 15 psrmulcl φ X × ˙ Y × ˙ Z B
17 1 10 4 6 16 psrelbas φ X × ˙ Y × ˙ Z : D Base R
18 17 ffnd φ X × ˙ Y × ˙ Z Fn D
19 eqid g D | g f x = g D | g f x
20 simpr φ x D x D
21 ringcmn R Ring R CMnd
22 3 21 syl φ R CMnd
23 22 adantr φ x D R CMnd
24 3 ad2antrr φ x D j g D | g f x R Ring
25 24 adantr φ x D j g D | g f x n h D | h f x f j R Ring
26 1 10 4 6 7 psrelbas φ X : D Base R
27 26 ad2antrr φ x D j g D | g f x X : D Base R
28 simpr φ x D j g D | g f x j g D | g f x
29 breq1 g = j g f x j f x
30 29 elrab j g D | g f x j D j f x
31 28 30 sylib φ x D j g D | g f x j D j f x
32 31 simpld φ x D j g D | g f x j D
33 27 32 ffvelrnd φ x D j g D | g f x X j Base R
34 33 adantr φ x D j g D | g f x n h D | h f x f j X j Base R
35 1 10 4 6 8 psrelbas φ Y : D Base R
36 35 ad3antrrr φ x D j g D | g f x n h D | h f x f j Y : D Base R
37 simpr φ x D j g D | g f x n h D | h f x f j n h D | h f x f j
38 breq1 h = n h f x f j n f x f j
39 38 elrab n h D | h f x f j n D n f x f j
40 37 39 sylib φ x D j g D | g f x n h D | h f x f j n D n f x f j
41 40 simpld φ x D j g D | g f x n h D | h f x f j n D
42 36 41 ffvelrnd φ x D j g D | g f x n h D | h f x f j Y n Base R
43 1 10 4 6 9 psrelbas φ Z : D Base R
44 43 ad3antrrr φ x D j g D | g f x n h D | h f x f j Z : D Base R
45 simplr φ x D j g D | g f x x D
46 4 psrbagf j D j : I 0
47 32 46 syl φ x D j g D | g f x j : I 0
48 31 simprd φ x D j g D | g f x j f x
49 4 psrbagcon x D j : I 0 j f x x f j D x f j f x
50 45 47 48 49 syl3anc φ x D j g D | g f x x f j D x f j f x
51 50 simpld φ x D j g D | g f x x f j D
52 51 adantr φ x D j g D | g f x n h D | h f x f j x f j D
53 4 psrbagf n D n : I 0
54 41 53 syl φ x D j g D | g f x n h D | h f x f j n : I 0
55 40 simprd φ x D j g D | g f x n h D | h f x f j n f x f j
56 4 psrbagcon x f j D n : I 0 n f x f j x f j f n D x f j f n f x f j
57 52 54 55 56 syl3anc φ x D j g D | g f x n h D | h f x f j x f j f n D x f j f n f x f j
58 57 simpld φ x D j g D | g f x n h D | h f x f j x f j f n D
59 44 58 ffvelrnd φ x D j g D | g f x n h D | h f x f j Z x f j f n Base R
60 eqid R = R
61 10 60 ringcl R Ring Y n Base R Z x f j f n Base R Y n R Z x f j f n Base R
62 25 42 59 61 syl3anc φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n Base R
63 10 60 ringcl R Ring X j Base R Y n R Z x f j f n Base R X j R Y n R Z x f j f n Base R
64 25 34 62 63 syl3anc φ x D j g D | g f x n h D | h f x f j X j R Y n R Z x f j f n Base R
65 64 anasss φ x D j g D | g f x n h D | h f x f j X j R Y n R Z x f j f n Base R
66 fveq2 n = k f j Y n = Y k f j
67 oveq2 n = k f j x f j f n = x f j f k f j
68 67 fveq2d n = k f j Z x f j f n = Z x f j f k f j
69 66 68 oveq12d n = k f j Y n R Z x f j f n = Y k f j R Z x f j f k f j
70 69 oveq2d n = k f j X j R Y n R Z x f j f n = X j R Y k f j R Z x f j f k f j
71 4 19 20 10 23 65 70 psrass1lem φ x D R k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j = R j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
72 7 ad2antrr φ x D k g D | g f x X B
73 8 ad2antrr φ x D k g D | g f x Y B
74 simpr φ x D k g D | g f x k g D | g f x
75 breq1 g = k g f x k f x
76 75 elrab k g D | g f x k D k f x
77 74 76 sylib φ x D k g D | g f x k D k f x
78 77 simpld φ x D k g D | g f x k D
79 1 6 60 5 4 72 73 78 psrmulval φ x D k g D | g f x X × ˙ Y k = R j h D | h f k X j R Y k f j
80 79 oveq1d φ x D k g D | g f x X × ˙ Y k R Z x f k = R j h D | h f k X j R Y k f j R Z x f k
81 eqid 0 R = 0 R
82 eqid + R = + R
83 3 ad2antrr φ x D k g D | g f x R Ring
84 4 psrbaglefi k D h D | h f k Fin
85 78 84 syl φ x D k g D | g f x h D | h f k Fin
86 43 ad2antrr φ x D k g D | g f x Z : D Base R
87 simplr φ x D k g D | g f x x D
88 4 psrbagf k D k : I 0
89 78 88 syl φ x D k g D | g f x k : I 0
90 77 simprd φ x D k g D | g f x k f x
91 4 psrbagcon x D k : I 0 k f x x f k D x f k f x
92 87 89 90 91 syl3anc φ x D k g D | g f x x f k D x f k f x
93 92 simpld φ x D k g D | g f x x f k D
94 86 93 ffvelrnd φ x D k g D | g f x Z x f k Base R
95 83 adantr φ x D k g D | g f x j h D | h f k R Ring
96 26 ad3antrrr φ x D k g D | g f x j h D | h f k X : D Base R
97 simpr φ x D k g D | g f x j h D | h f k j h D | h f k
98 breq1 h = j h f k j f k
99 98 elrab j h D | h f k j D j f k
100 97 99 sylib φ x D k g D | g f x j h D | h f k j D j f k
101 100 simpld φ x D k g D | g f x j h D | h f k j D
102 96 101 ffvelrnd φ x D k g D | g f x j h D | h f k X j Base R
103 35 ad3antrrr φ x D k g D | g f x j h D | h f k Y : D Base R
104 78 adantr φ x D k g D | g f x j h D | h f k k D
105 101 46 syl φ x D k g D | g f x j h D | h f k j : I 0
106 100 simprd φ x D k g D | g f x j h D | h f k j f k
107 4 psrbagcon k D j : I 0 j f k k f j D k f j f k
108 104 105 106 107 syl3anc φ x D k g D | g f x j h D | h f k k f j D k f j f k
109 108 simpld φ x D k g D | g f x j h D | h f k k f j D
110 103 109 ffvelrnd φ x D k g D | g f x j h D | h f k Y k f j Base R
111 10 60 ringcl R Ring X j Base R Y k f j Base R X j R Y k f j Base R
112 95 102 110 111 syl3anc φ x D k g D | g f x j h D | h f k X j R Y k f j Base R
113 eqid j h D | h f k X j R Y k f j = j h D | h f k X j R Y k f j
114 fvex 0 R V
115 114 a1i φ x D k g D | g f x 0 R V
116 113 85 112 115 fsuppmptdm φ x D k g D | g f x finSupp 0 R j h D | h f k X j R Y k f j
117 10 81 82 60 83 85 94 112 116 gsummulc1 φ x D k g D | g f x R j h D | h f k X j R Y k f j R Z x f k = R j h D | h f k X j R Y k f j R Z x f k
118 94 adantr φ x D k g D | g f x j h D | h f k Z x f k Base R
119 10 60 ringass R Ring X j Base R Y k f j Base R Z x f k Base R X j R Y k f j R Z x f k = X j R Y k f j R Z x f k
120 95 102 110 118 119 syl13anc φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = X j R Y k f j R Z x f k
121 4 psrbagf x D x : I 0
122 121 adantl φ x D x : I 0
123 122 ad2antrr φ x D k g D | g f x j h D | h f k x : I 0
124 123 ffvelrnda φ x D k g D | g f x j h D | h f k z I x z 0
125 89 adantr φ x D k g D | g f x j h D | h f k k : I 0
126 125 ffvelrnda φ x D k g D | g f x j h D | h f k z I k z 0
127 105 ffvelrnda φ x D k g D | g f x j h D | h f k z I j z 0
128 nn0cn x z 0 x z
129 nn0cn k z 0 k z
130 nn0cn j z 0 j z
131 nnncan2 x z k z j z x z - j z - k z j z = x z k z
132 128 129 130 131 syl3an x z 0 k z 0 j z 0 x z - j z - k z j z = x z k z
133 124 126 127 132 syl3anc φ x D k g D | g f x j h D | h f k z I x z - j z - k z j z = x z k z
134 133 mpteq2dva φ x D k g D | g f x j h D | h f k z I x z - j z - k z j z = z I x z k z
135 2 ad2antrr φ x D k g D | g f x I V
136 135 adantr φ x D k g D | g f x j h D | h f k I V
137 ovexd φ x D k g D | g f x j h D | h f k z I x z j z V
138 ovexd φ x D k g D | g f x j h D | h f k z I k z j z V
139 123 feqmptd φ x D k g D | g f x j h D | h f k x = z I x z
140 105 feqmptd φ x D k g D | g f x j h D | h f k j = z I j z
141 136 124 127 139 140 offval2 φ x D k g D | g f x j h D | h f k x f j = z I x z j z
142 125 feqmptd φ x D k g D | g f x j h D | h f k k = z I k z
143 136 126 127 142 140 offval2 φ x D k g D | g f x j h D | h f k k f j = z I k z j z
144 136 137 138 141 143 offval2 φ x D k g D | g f x j h D | h f k x f j f k f j = z I x z - j z - k z j z
145 136 124 126 139 142 offval2 φ x D k g D | g f x j h D | h f k x f k = z I x z k z
146 134 144 145 3eqtr4d φ x D k g D | g f x j h D | h f k x f j f k f j = x f k
147 146 fveq2d φ x D k g D | g f x j h D | h f k Z x f j f k f j = Z x f k
148 147 oveq2d φ x D k g D | g f x j h D | h f k Y k f j R Z x f j f k f j = Y k f j R Z x f k
149 148 oveq2d φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f j f k f j = X j R Y k f j R Z x f k
150 120 149 eqtr4d φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = X j R Y k f j R Z x f j f k f j
151 150 mpteq2dva φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = j h D | h f k X j R Y k f j R Z x f j f k f j
152 151 oveq2d φ x D k g D | g f x R j h D | h f k X j R Y k f j R Z x f k = R j h D | h f k X j R Y k f j R Z x f j f k f j
153 80 117 152 3eqtr2d φ x D k g D | g f x X × ˙ Y k R Z x f k = R j h D | h f k X j R Y k f j R Z x f j f k f j
154 153 mpteq2dva φ x D k g D | g f x X × ˙ Y k R Z x f k = k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j
155 154 oveq2d φ x D R k g D | g f x X × ˙ Y k R Z x f k = R k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j
156 8 ad2antrr φ x D j g D | g f x Y B
157 9 ad2antrr φ x D j g D | g f x Z B
158 1 6 60 5 4 156 157 51 psrmulval φ x D j g D | g f x Y × ˙ Z x f j = R n h D | h f x f j Y n R Z x f j f n
159 158 oveq2d φ x D j g D | g f x X j R Y × ˙ Z x f j = X j R R n h D | h f x f j Y n R Z x f j f n
160 4 psrbaglefi x f j D h D | h f x f j Fin
161 51 160 syl φ x D j g D | g f x h D | h f x f j Fin
162 ovex 0 I V
163 4 162 rab2ex h D | h f x f j V
164 163 mptex n h D | h f x f j Y n R Z x f j f n V
165 funmpt Fun n h D | h f x f j Y n R Z x f j f n
166 164 165 114 3pm3.2i n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V
167 166 a1i φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V
168 suppssdm n h D | h f x f j Y n R Z x f j f n supp 0 R dom n h D | h f x f j Y n R Z x f j f n
169 eqid n h D | h f x f j Y n R Z x f j f n = n h D | h f x f j Y n R Z x f j f n
170 169 dmmptss dom n h D | h f x f j Y n R Z x f j f n h D | h f x f j
171 168 170 sstri n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j
172 171 a1i φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j
173 suppssfifsupp n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V h D | h f x f j Fin n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j finSupp 0 R n h D | h f x f j Y n R Z x f j f n
174 167 161 172 173 syl12anc φ x D j g D | g f x finSupp 0 R n h D | h f x f j Y n R Z x f j f n
175 10 81 82 60 24 161 33 62 174 gsummulc2 φ x D j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n = X j R R n h D | h f x f j Y n R Z x f j f n
176 159 175 eqtr4d φ x D j g D | g f x X j R Y × ˙ Z x f j = R n h D | h f x f j X j R Y n R Z x f j f n
177 176 mpteq2dva φ x D j g D | g f x X j R Y × ˙ Z x f j = j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
178 177 oveq2d φ x D R j g D | g f x X j R Y × ˙ Z x f j = R j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
179 71 155 178 3eqtr4d φ x D R k g D | g f x X × ˙ Y k R Z x f k = R j g D | g f x X j R Y × ˙ Z x f j
180 11 adantr φ x D X × ˙ Y B
181 9 adantr φ x D Z B
182 1 6 60 5 4 180 181 20 psrmulval φ x D X × ˙ Y × ˙ Z x = R k g D | g f x X × ˙ Y k R Z x f k
183 7 adantr φ x D X B
184 15 adantr φ x D Y × ˙ Z B
185 1 6 60 5 4 183 184 20 psrmulval φ x D X × ˙ Y × ˙ Z x = R j g D | g f x X j R Y × ˙ Z x f j
186 179 182 185 3eqtr4d φ x D X × ˙ Y × ˙ Z x = X × ˙ Y × ˙ Z x
187 14 18 186 eqfnfvd φ X × ˙ Y × ˙ Z = X × ˙ Y × ˙ Z