Metamath Proof Explorer


Theorem psrass1

Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
psrass.d D = f 0 I | f -1 Fin
psrass.t × ˙ = S
psrass.b B = Base S
psrass.x φ X B
psrass.y φ Y B
psrass.z φ Z B
Assertion psrass1 φ X × ˙ Y × ˙ Z = X × ˙ Y × ˙ Z

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 psrass.d D = f 0 I | f -1 Fin
5 psrass.t × ˙ = S
6 psrass.b B = Base S
7 psrass.x φ X B
8 psrass.y φ Y B
9 psrass.z φ Z B
10 eqid Base R = Base R
11 1 6 5 3 7 8 psrmulcl φ X × ˙ Y B
12 1 6 5 3 11 9 psrmulcl φ X × ˙ Y × ˙ Z B
13 1 10 4 6 12 psrelbas φ X × ˙ Y × ˙ Z : D Base R
14 13 ffnd φ X × ˙ Y × ˙ Z Fn D
15 1 6 5 3 8 9 psrmulcl φ Y × ˙ Z B
16 1 6 5 3 7 15 psrmulcl φ X × ˙ Y × ˙ Z B
17 1 10 4 6 16 psrelbas φ X × ˙ Y × ˙ Z : D Base R
18 17 ffnd φ X × ˙ Y × ˙ Z Fn D
19 eqid g D | g f x = g D | g f x
20 2 adantr φ x D I V
21 simpr φ x D x D
22 ringcmn R Ring R CMnd
23 3 22 syl φ R CMnd
24 23 adantr φ x D R CMnd
25 3 ad2antrr φ x D j g D | g f x R Ring
26 25 adantr φ x D j g D | g f x n h D | h f x f j R Ring
27 1 10 4 6 7 psrelbas φ X : D Base R
28 27 ad2antrr φ x D j g D | g f x X : D Base R
29 simpr φ x D j g D | g f x j g D | g f x
30 breq1 g = j g f x j f x
31 30 elrab j g D | g f x j D j f x
32 29 31 sylib φ x D j g D | g f x j D j f x
33 32 simpld φ x D j g D | g f x j D
34 28 33 ffvelrnd φ x D j g D | g f x X j Base R
35 34 adantr φ x D j g D | g f x n h D | h f x f j X j Base R
36 1 10 4 6 8 psrelbas φ Y : D Base R
37 36 ad3antrrr φ x D j g D | g f x n h D | h f x f j Y : D Base R
38 simpr φ x D j g D | g f x n h D | h f x f j n h D | h f x f j
39 breq1 h = n h f x f j n f x f j
40 39 elrab n h D | h f x f j n D n f x f j
41 38 40 sylib φ x D j g D | g f x n h D | h f x f j n D n f x f j
42 41 simpld φ x D j g D | g f x n h D | h f x f j n D
43 37 42 ffvelrnd φ x D j g D | g f x n h D | h f x f j Y n Base R
44 1 10 4 6 9 psrelbas φ Z : D Base R
45 44 ad3antrrr φ x D j g D | g f x n h D | h f x f j Z : D Base R
46 2 ad2antrr φ x D j g D | g f x I V
47 46 adantr φ x D j g D | g f x n h D | h f x f j I V
48 simplr φ x D j g D | g f x x D
49 4 psrbagf I V j D j : I 0
50 46 33 49 syl2anc φ x D j g D | g f x j : I 0
51 32 simprd φ x D j g D | g f x j f x
52 4 psrbagcon I V x D j : I 0 j f x x f j D x f j f x
53 46 48 50 51 52 syl13anc φ x D j g D | g f x x f j D x f j f x
54 53 simpld φ x D j g D | g f x x f j D
55 54 adantr φ x D j g D | g f x n h D | h f x f j x f j D
56 4 psrbagf I V n D n : I 0
57 47 42 56 syl2anc φ x D j g D | g f x n h D | h f x f j n : I 0
58 41 simprd φ x D j g D | g f x n h D | h f x f j n f x f j
59 4 psrbagcon I V x f j D n : I 0 n f x f j x f j f n D x f j f n f x f j
60 47 55 57 58 59 syl13anc φ x D j g D | g f x n h D | h f x f j x f j f n D x f j f n f x f j
61 60 simpld φ x D j g D | g f x n h D | h f x f j x f j f n D
62 45 61 ffvelrnd φ x D j g D | g f x n h D | h f x f j Z x f j f n Base R
63 eqid R = R
64 10 63 ringcl R Ring Y n Base R Z x f j f n Base R Y n R Z x f j f n Base R
65 26 43 62 64 syl3anc φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n Base R
66 10 63 ringcl R Ring X j Base R Y n R Z x f j f n Base R X j R Y n R Z x f j f n Base R
67 26 35 65 66 syl3anc φ x D j g D | g f x n h D | h f x f j X j R Y n R Z x f j f n Base R
68 67 anasss φ x D j g D | g f x n h D | h f x f j X j R Y n R Z x f j f n Base R
69 fveq2 n = k f j Y n = Y k f j
70 oveq2 n = k f j x f j f n = x f j f k f j
71 70 fveq2d n = k f j Z x f j f n = Z x f j f k f j
72 69 71 oveq12d n = k f j Y n R Z x f j f n = Y k f j R Z x f j f k f j
73 72 oveq2d n = k f j X j R Y n R Z x f j f n = X j R Y k f j R Z x f j f k f j
74 4 19 20 21 10 24 68 73 psrass1lem φ x D R k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j = R j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
75 7 ad2antrr φ x D k g D | g f x X B
76 8 ad2antrr φ x D k g D | g f x Y B
77 simpr φ x D k g D | g f x k g D | g f x
78 breq1 g = k g f x k f x
79 78 elrab k g D | g f x k D k f x
80 77 79 sylib φ x D k g D | g f x k D k f x
81 80 simpld φ x D k g D | g f x k D
82 1 6 63 5 4 75 76 81 psrmulval φ x D k g D | g f x X × ˙ Y k = R j h D | h f k X j R Y k f j
83 82 oveq1d φ x D k g D | g f x X × ˙ Y k R Z x f k = R j h D | h f k X j R Y k f j R Z x f k
84 eqid 0 R = 0 R
85 eqid + R = + R
86 3 ad2antrr φ x D k g D | g f x R Ring
87 2 ad2antrr φ x D k g D | g f x I V
88 4 psrbaglefi I V k D h D | h f k Fin
89 87 81 88 syl2anc φ x D k g D | g f x h D | h f k Fin
90 44 ad2antrr φ x D k g D | g f x Z : D Base R
91 simplr φ x D k g D | g f x x D
92 4 psrbagf I V k D k : I 0
93 87 81 92 syl2anc φ x D k g D | g f x k : I 0
94 80 simprd φ x D k g D | g f x k f x
95 4 psrbagcon I V x D k : I 0 k f x x f k D x f k f x
96 87 91 93 94 95 syl13anc φ x D k g D | g f x x f k D x f k f x
97 96 simpld φ x D k g D | g f x x f k D
98 90 97 ffvelrnd φ x D k g D | g f x Z x f k Base R
99 86 adantr φ x D k g D | g f x j h D | h f k R Ring
100 27 ad3antrrr φ x D k g D | g f x j h D | h f k X : D Base R
101 simpr φ x D k g D | g f x j h D | h f k j h D | h f k
102 breq1 h = j h f k j f k
103 102 elrab j h D | h f k j D j f k
104 101 103 sylib φ x D k g D | g f x j h D | h f k j D j f k
105 104 simpld φ x D k g D | g f x j h D | h f k j D
106 100 105 ffvelrnd φ x D k g D | g f x j h D | h f k X j Base R
107 36 ad3antrrr φ x D k g D | g f x j h D | h f k Y : D Base R
108 87 adantr φ x D k g D | g f x j h D | h f k I V
109 81 adantr φ x D k g D | g f x j h D | h f k k D
110 108 105 49 syl2anc φ x D k g D | g f x j h D | h f k j : I 0
111 104 simprd φ x D k g D | g f x j h D | h f k j f k
112 4 psrbagcon I V k D j : I 0 j f k k f j D k f j f k
113 108 109 110 111 112 syl13anc φ x D k g D | g f x j h D | h f k k f j D k f j f k
114 113 simpld φ x D k g D | g f x j h D | h f k k f j D
115 107 114 ffvelrnd φ x D k g D | g f x j h D | h f k Y k f j Base R
116 10 63 ringcl R Ring X j Base R Y k f j Base R X j R Y k f j Base R
117 99 106 115 116 syl3anc φ x D k g D | g f x j h D | h f k X j R Y k f j Base R
118 eqid j h D | h f k X j R Y k f j = j h D | h f k X j R Y k f j
119 fvex 0 R V
120 119 a1i φ x D k g D | g f x 0 R V
121 118 89 117 120 fsuppmptdm φ x D k g D | g f x finSupp 0 R j h D | h f k X j R Y k f j
122 10 84 85 63 86 89 98 117 121 gsummulc1 φ x D k g D | g f x R j h D | h f k X j R Y k f j R Z x f k = R j h D | h f k X j R Y k f j R Z x f k
123 98 adantr φ x D k g D | g f x j h D | h f k Z x f k Base R
124 10 63 ringass R Ring X j Base R Y k f j Base R Z x f k Base R X j R Y k f j R Z x f k = X j R Y k f j R Z x f k
125 99 106 115 123 124 syl13anc φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = X j R Y k f j R Z x f k
126 4 psrbagf I V x D x : I 0
127 2 126 sylan φ x D x : I 0
128 127 ad2antrr φ x D k g D | g f x j h D | h f k x : I 0
129 128 ffvelrnda φ x D k g D | g f x j h D | h f k z I x z 0
130 93 adantr φ x D k g D | g f x j h D | h f k k : I 0
131 130 ffvelrnda φ x D k g D | g f x j h D | h f k z I k z 0
132 110 ffvelrnda φ x D k g D | g f x j h D | h f k z I j z 0
133 nn0cn x z 0 x z
134 nn0cn k z 0 k z
135 nn0cn j z 0 j z
136 nnncan2 x z k z j z x z - j z - k z j z = x z k z
137 133 134 135 136 syl3an x z 0 k z 0 j z 0 x z - j z - k z j z = x z k z
138 129 131 132 137 syl3anc φ x D k g D | g f x j h D | h f k z I x z - j z - k z j z = x z k z
139 138 mpteq2dva φ x D k g D | g f x j h D | h f k z I x z - j z - k z j z = z I x z k z
140 ovexd φ x D k g D | g f x j h D | h f k z I x z j z V
141 ovexd φ x D k g D | g f x j h D | h f k z I k z j z V
142 128 feqmptd φ x D k g D | g f x j h D | h f k x = z I x z
143 110 feqmptd φ x D k g D | g f x j h D | h f k j = z I j z
144 108 129 132 142 143 offval2 φ x D k g D | g f x j h D | h f k x f j = z I x z j z
145 130 feqmptd φ x D k g D | g f x j h D | h f k k = z I k z
146 108 131 132 145 143 offval2 φ x D k g D | g f x j h D | h f k k f j = z I k z j z
147 108 140 141 144 146 offval2 φ x D k g D | g f x j h D | h f k x f j f k f j = z I x z - j z - k z j z
148 108 129 131 142 145 offval2 φ x D k g D | g f x j h D | h f k x f k = z I x z k z
149 139 147 148 3eqtr4d φ x D k g D | g f x j h D | h f k x f j f k f j = x f k
150 149 fveq2d φ x D k g D | g f x j h D | h f k Z x f j f k f j = Z x f k
151 150 oveq2d φ x D k g D | g f x j h D | h f k Y k f j R Z x f j f k f j = Y k f j R Z x f k
152 151 oveq2d φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f j f k f j = X j R Y k f j R Z x f k
153 125 152 eqtr4d φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = X j R Y k f j R Z x f j f k f j
154 153 mpteq2dva φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = j h D | h f k X j R Y k f j R Z x f j f k f j
155 154 oveq2d φ x D k g D | g f x R j h D | h f k X j R Y k f j R Z x f k = R j h D | h f k X j R Y k f j R Z x f j f k f j
156 83 122 155 3eqtr2d φ x D k g D | g f x X × ˙ Y k R Z x f k = R j h D | h f k X j R Y k f j R Z x f j f k f j
157 156 mpteq2dva φ x D k g D | g f x X × ˙ Y k R Z x f k = k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j
158 157 oveq2d φ x D R k g D | g f x X × ˙ Y k R Z x f k = R k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j
159 8 ad2antrr φ x D j g D | g f x Y B
160 9 ad2antrr φ x D j g D | g f x Z B
161 1 6 63 5 4 159 160 54 psrmulval φ x D j g D | g f x Y × ˙ Z x f j = R n h D | h f x f j Y n R Z x f j f n
162 161 oveq2d φ x D j g D | g f x X j R Y × ˙ Z x f j = X j R R n h D | h f x f j Y n R Z x f j f n
163 4 psrbaglefi I V x f j D h D | h f x f j Fin
164 46 54 163 syl2anc φ x D j g D | g f x h D | h f x f j Fin
165 ovex 0 I V
166 4 165 rab2ex h D | h f x f j V
167 166 mptex n h D | h f x f j Y n R Z x f j f n V
168 funmpt Fun n h D | h f x f j Y n R Z x f j f n
169 167 168 119 3pm3.2i n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V
170 169 a1i φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V
171 suppssdm n h D | h f x f j Y n R Z x f j f n supp 0 R dom n h D | h f x f j Y n R Z x f j f n
172 eqid n h D | h f x f j Y n R Z x f j f n = n h D | h f x f j Y n R Z x f j f n
173 172 dmmptss dom n h D | h f x f j Y n R Z x f j f n h D | h f x f j
174 171 173 sstri n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j
175 174 a1i φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j
176 suppssfifsupp n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V h D | h f x f j Fin n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j finSupp 0 R n h D | h f x f j Y n R Z x f j f n
177 170 164 175 176 syl12anc φ x D j g D | g f x finSupp 0 R n h D | h f x f j Y n R Z x f j f n
178 10 84 85 63 25 164 34 65 177 gsummulc2 φ x D j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n = X j R R n h D | h f x f j Y n R Z x f j f n
179 162 178 eqtr4d φ x D j g D | g f x X j R Y × ˙ Z x f j = R n h D | h f x f j X j R Y n R Z x f j f n
180 179 mpteq2dva φ x D j g D | g f x X j R Y × ˙ Z x f j = j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
181 180 oveq2d φ x D R j g D | g f x X j R Y × ˙ Z x f j = R j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
182 74 158 181 3eqtr4d φ x D R k g D | g f x X × ˙ Y k R Z x f k = R j g D | g f x X j R Y × ˙ Z x f j
183 11 adantr φ x D X × ˙ Y B
184 9 adantr φ x D Z B
185 1 6 63 5 4 183 184 21 psrmulval φ x D X × ˙ Y × ˙ Z x = R k g D | g f x X × ˙ Y k R Z x f k
186 7 adantr φ x D X B
187 15 adantr φ x D Y × ˙ Z B
188 1 6 63 5 4 186 187 21 psrmulval φ x D X × ˙ Y × ˙ Z x = R j g D | g f x X j R Y × ˙ Z x f j
189 182 185 188 3eqtr4d φ x D X × ˙ Y × ˙ Z x = X × ˙ Y × ˙ Z x
190 14 18 189 eqfnfvd φ X × ˙ Y × ˙ Z = X × ˙ Y × ˙ Z