Metamath Proof Explorer


Theorem psrass1lem

Description: A group sum commutation used by psrass1 . (Contributed by Mario Carneiro, 5-Jan-2015) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses gsumbagdiag.d D = f 0 I | f -1 Fin
gsumbagdiag.s S = y D | y f F
gsumbagdiag.f φ F D
gsumbagdiag.b B = Base G
gsumbagdiag.g φ G CMnd
gsumbagdiag.x φ j S k x D | x f F f j X B
psrass1lem.y k = n f j X = Y
Assertion psrass1lem φ G n S G j x D | x f n Y = G j S G k x D | x f F f j X

Proof

Step Hyp Ref Expression
1 gsumbagdiag.d D = f 0 I | f -1 Fin
2 gsumbagdiag.s S = y D | y f F
3 gsumbagdiag.f φ F D
4 gsumbagdiag.b B = Base G
5 gsumbagdiag.g φ G CMnd
6 gsumbagdiag.x φ j S k x D | x f F f j X B
7 psrass1lem.y k = n f j X = Y
8 1 2 3 gsumbagdiaglem φ m S j x D | x f F f m j S m x D | x f F f j
9 6 anassrs φ j S k x D | x f F f j X B
10 9 fmpttd φ j S k x D | x f F f j X : x D | x f F f j B
11 2 ssrab3 S D
12 1 2 psrbagconcl F D j S F f j S
13 3 12 sylan φ j S F f j S
14 11 13 sselid φ j S F f j D
15 eqid x D | x f F f j = x D | x f F f j
16 1 15 psrbagconf1o F f j D m x D | x f F f j F f j f m : x D | x f F f j 1-1 onto x D | x f F f j
17 14 16 syl φ j S m x D | x f F f j F f j f m : x D | x f F f j 1-1 onto x D | x f F f j
18 f1of m x D | x f F f j F f j f m : x D | x f F f j 1-1 onto x D | x f F f j m x D | x f F f j F f j f m : x D | x f F f j x D | x f F f j
19 17 18 syl φ j S m x D | x f F f j F f j f m : x D | x f F f j x D | x f F f j
20 10 19 fcod φ j S k x D | x f F f j X m x D | x f F f j F f j f m : x D | x f F f j B
21 3 adantr φ j S F D
22 21 adantr φ j S m x D | x f F f j F D
23 1 psrbagf F D F : I 0
24 22 23 syl φ j S m x D | x f F f j F : I 0
25 24 ffvelrnda φ j S m x D | x f F f j z I F z 0
26 simplr φ j S m x D | x f F f j j S
27 11 26 sselid φ j S m x D | x f F f j j D
28 1 psrbagf j D j : I 0
29 27 28 syl φ j S m x D | x f F f j j : I 0
30 29 ffvelrnda φ j S m x D | x f F f j z I j z 0
31 ssrab2 x D | x f F f j D
32 simpr φ j S m x D | x f F f j m x D | x f F f j
33 31 32 sselid φ j S m x D | x f F f j m D
34 1 psrbagf m D m : I 0
35 33 34 syl φ j S m x D | x f F f j m : I 0
36 35 ffvelrnda φ j S m x D | x f F f j z I m z 0
37 nn0cn F z 0 F z
38 nn0cn j z 0 j z
39 nn0cn m z 0 m z
40 sub32 F z j z m z F z - j z - m z = F z - m z - j z
41 37 38 39 40 syl3an F z 0 j z 0 m z 0 F z - j z - m z = F z - m z - j z
42 25 30 36 41 syl3anc φ j S m x D | x f F f j z I F z - j z - m z = F z - m z - j z
43 42 mpteq2dva φ j S m x D | x f F f j z I F z - j z - m z = z I F z - m z - j z
44 35 ffnd φ j S m x D | x f F f j m Fn I
45 32 44 fndmexd φ j S m x D | x f F f j I V
46 ovexd φ j S m x D | x f F f j z I F z j z V
47 24 feqmptd φ j S m x D | x f F f j F = z I F z
48 29 feqmptd φ j S m x D | x f F f j j = z I j z
49 45 25 30 47 48 offval2 φ j S m x D | x f F f j F f j = z I F z j z
50 35 feqmptd φ j S m x D | x f F f j m = z I m z
51 45 46 36 49 50 offval2 φ j S m x D | x f F f j F f j f m = z I F z - j z - m z
52 ovexd φ j S m x D | x f F f j z I F z m z V
53 45 25 36 47 50 offval2 φ j S m x D | x f F f j F f m = z I F z m z
54 45 52 30 53 48 offval2 φ j S m x D | x f F f j F f m f j = z I F z - m z - j z
55 43 51 54 3eqtr4d φ j S m x D | x f F f j F f j f m = F f m f j
56 1 15 psrbagconcl F f j D m x D | x f F f j F f j f m x D | x f F f j
57 14 56 sylan φ j S m x D | x f F f j F f j f m x D | x f F f j
58 55 57 eqeltrrd φ j S m x D | x f F f j F f m f j x D | x f F f j
59 55 mpteq2dva φ j S m x D | x f F f j F f j f m = m x D | x f F f j F f m f j
60 nfcv _ n X
61 nfcsb1v _ k n / k X
62 csbeq1a k = n X = n / k X
63 60 61 62 cbvmpt k x D | x f F f j X = n x D | x f F f j n / k X
64 63 a1i φ j S k x D | x f F f j X = n x D | x f F f j n / k X
65 csbeq1 n = F f m f j n / k X = F f m f j / k X
66 58 59 64 65 fmptco φ j S k x D | x f F f j X m x D | x f F f j F f j f m = m x D | x f F f j F f m f j / k X
67 66 feq1d φ j S k x D | x f F f j X m x D | x f F f j F f j f m : x D | x f F f j B m x D | x f F f j F f m f j / k X : x D | x f F f j B
68 20 67 mpbid φ j S m x D | x f F f j F f m f j / k X : x D | x f F f j B
69 68 fvmptelrn φ j S m x D | x f F f j F f m f j / k X B
70 69 anasss φ j S m x D | x f F f j F f m f j / k X B
71 8 70 syldan φ m S j x D | x f F f m F f m f j / k X B
72 1 2 3 4 5 71 gsumbagdiag φ G m S , j x D | x f F f m F f m f j / k X = G j S , m x D | x f F f j F f m f j / k X
73 eqid 0 G = 0 G
74 1 psrbaglefi F D y D | y f F Fin
75 3 74 syl φ y D | y f F Fin
76 2 75 eqeltrid φ S Fin
77 1 2 psrbagconcl F D m S F f m S
78 3 77 sylan φ m S F f m S
79 11 78 sselid φ m S F f m D
80 1 psrbaglefi F f m D x D | x f F f m Fin
81 79 80 syl φ m S x D | x f F f m Fin
82 xpfi S Fin S Fin S × S Fin
83 76 76 82 syl2anc φ S × S Fin
84 simprl φ m S j x D | x f F f m m S
85 8 simpld φ m S j x D | x f F f m j S
86 brxp m S × S j m S j S
87 84 85 86 sylanbrc φ m S j x D | x f F f m m S × S j
88 87 pm2.24d φ m S j x D | x f F f m ¬ m S × S j F f m f j / k X = 0 G
89 88 impr φ m S j x D | x f F f m ¬ m S × S j F f m f j / k X = 0 G
90 4 73 5 76 81 71 83 89 gsum2d2 φ G m S , j x D | x f F f m F f m f j / k X = G m S G j x D | x f F f m F f m f j / k X
91 1 psrbaglefi F f j D x D | x f F f j Fin
92 14 91 syl φ j S x D | x f F f j Fin
93 simprl φ j S m x D | x f F f j j S
94 1 2 3 gsumbagdiaglem φ j S m x D | x f F f j m S j x D | x f F f m
95 94 simpld φ j S m x D | x f F f j m S
96 brxp j S × S m j S m S
97 93 95 96 sylanbrc φ j S m x D | x f F f j j S × S m
98 97 pm2.24d φ j S m x D | x f F f j ¬ j S × S m F f m f j / k X = 0 G
99 98 impr φ j S m x D | x f F f j ¬ j S × S m F f m f j / k X = 0 G
100 4 73 5 76 92 70 83 99 gsum2d2 φ G j S , m x D | x f F f j F f m f j / k X = G j S G m x D | x f F f j F f m f j / k X
101 72 90 100 3eqtr3d φ G m S G j x D | x f F f m F f m f j / k X = G j S G m x D | x f F f j F f m f j / k X
102 5 adantr φ m S G CMnd
103 71 anassrs φ m S j x D | x f F f m F f m f j / k X B
104 103 fmpttd φ m S j x D | x f F f m F f m f j / k X : x D | x f F f m B
105 ovex 0 I V
106 1 105 rabex2 D V
107 106 a1i φ m S D V
108 rabexg D V x D | x f F f m V
109 mptexg x D | x f F f m V j x D | x f F f m F f m f j / k X V
110 107 108 109 3syl φ m S j x D | x f F f m F f m f j / k X V
111 funmpt Fun j x D | x f F f m F f m f j / k X
112 111 a1i φ m S Fun j x D | x f F f m F f m f j / k X
113 fvexd φ m S 0 G V
114 suppssdm j x D | x f F f m F f m f j / k X supp 0 G dom j x D | x f F f m F f m f j / k X
115 eqid j x D | x f F f m F f m f j / k X = j x D | x f F f m F f m f j / k X
116 115 dmmptss dom j x D | x f F f m F f m f j / k X x D | x f F f m
117 114 116 sstri j x D | x f F f m F f m f j / k X supp 0 G x D | x f F f m
118 117 a1i φ m S j x D | x f F f m F f m f j / k X supp 0 G x D | x f F f m
119 suppssfifsupp j x D | x f F f m F f m f j / k X V Fun j x D | x f F f m F f m f j / k X 0 G V x D | x f F f m Fin j x D | x f F f m F f m f j / k X supp 0 G x D | x f F f m finSupp 0 G j x D | x f F f m F f m f j / k X
120 110 112 113 81 118 119 syl32anc φ m S finSupp 0 G j x D | x f F f m F f m f j / k X
121 4 73 102 81 104 120 gsumcl φ m S G j x D | x f F f m F f m f j / k X B
122 121 fmpttd φ m S G j x D | x f F f m F f m f j / k X : S B
123 1 2 psrbagconf1o F D m S F f m : S 1-1 onto S
124 3 123 syl φ m S F f m : S 1-1 onto S
125 f1ocnv m S F f m : S 1-1 onto S m S F f m -1 : S 1-1 onto S
126 f1of m S F f m -1 : S 1-1 onto S m S F f m -1 : S S
127 124 125 126 3syl φ m S F f m -1 : S S
128 122 127 fcod φ m S G j x D | x f F f m F f m f j / k X m S F f m -1 : S B
129 coass n S G j x D | x f n Y m S F f m m S F f m -1 = n S G j x D | x f n Y m S F f m m S F f m -1
130 f1ococnv2 m S F f m : S 1-1 onto S m S F f m m S F f m -1 = I S
131 124 130 syl φ m S F f m m S F f m -1 = I S
132 131 coeq2d φ n S G j x D | x f n Y m S F f m m S F f m -1 = n S G j x D | x f n Y I S
133 129 132 syl5eq φ n S G j x D | x f n Y m S F f m m S F f m -1 = n S G j x D | x f n Y I S
134 eqidd φ m S F f m = m S F f m
135 eqidd φ n S G j x D | x f n Y = n S G j x D | x f n Y
136 breq2 n = F f m x f n x f F f m
137 136 rabbidv n = F f m x D | x f n = x D | x f F f m
138 ovex n f j V
139 138 7 csbie n f j / k X = Y
140 oveq1 n = F f m n f j = F f m f j
141 140 csbeq1d n = F f m n f j / k X = F f m f j / k X
142 139 141 eqtr3id n = F f m Y = F f m f j / k X
143 137 142 mpteq12dv n = F f m j x D | x f n Y = j x D | x f F f m F f m f j / k X
144 143 oveq2d n = F f m G j x D | x f n Y = G j x D | x f F f m F f m f j / k X
145 78 134 135 144 fmptco φ n S G j x D | x f n Y m S F f m = m S G j x D | x f F f m F f m f j / k X
146 145 coeq1d φ n S G j x D | x f n Y m S F f m m S F f m -1 = m S G j x D | x f F f m F f m f j / k X m S F f m -1
147 coires1 n S G j x D | x f n Y I S = n S G j x D | x f n Y S
148 ssid S S
149 resmpt S S n S G j x D | x f n Y S = n S G j x D | x f n Y
150 148 149 ax-mp n S G j x D | x f n Y S = n S G j x D | x f n Y
151 147 150 eqtri n S G j x D | x f n Y I S = n S G j x D | x f n Y
152 151 a1i φ n S G j x D | x f n Y I S = n S G j x D | x f n Y
153 133 146 152 3eqtr3d φ m S G j x D | x f F f m F f m f j / k X m S F f m -1 = n S G j x D | x f n Y
154 153 feq1d φ m S G j x D | x f F f m F f m f j / k X m S F f m -1 : S B n S G j x D | x f n Y : S B
155 128 154 mpbid φ n S G j x D | x f n Y : S B
156 rabexg D V y D | y f F V
157 106 156 mp1i φ y D | y f F V
158 2 157 eqeltrid φ S V
159 158 mptexd φ n S G j x D | x f n Y V
160 funmpt Fun n S G j x D | x f n Y
161 160 a1i φ Fun n S G j x D | x f n Y
162 fvexd φ 0 G V
163 suppssdm n S G j x D | x f n Y supp 0 G dom n S G j x D | x f n Y
164 eqid n S G j x D | x f n Y = n S G j x D | x f n Y
165 164 dmmptss dom n S G j x D | x f n Y S
166 163 165 sstri n S G j x D | x f n Y supp 0 G S
167 166 a1i φ n S G j x D | x f n Y supp 0 G S
168 suppssfifsupp n S G j x D | x f n Y V Fun n S G j x D | x f n Y 0 G V S Fin n S G j x D | x f n Y supp 0 G S finSupp 0 G n S G j x D | x f n Y
169 159 161 162 76 167 168 syl32anc φ finSupp 0 G n S G j x D | x f n Y
170 4 73 5 76 155 169 124 gsumf1o φ G n S G j x D | x f n Y = G n S G j x D | x f n Y m S F f m
171 145 oveq2d φ G n S G j x D | x f n Y m S F f m = G m S G j x D | x f F f m F f m f j / k X
172 170 171 eqtrd φ G n S G j x D | x f n Y = G m S G j x D | x f F f m F f m f j / k X
173 5 adantr φ j S G CMnd
174 106 a1i φ j S D V
175 rabexg D V x D | x f F f j V
176 mptexg x D | x f F f j V k x D | x f F f j X V
177 174 175 176 3syl φ j S k x D | x f F f j X V
178 funmpt Fun k x D | x f F f j X
179 178 a1i φ j S Fun k x D | x f F f j X
180 fvexd φ j S 0 G V
181 suppssdm k x D | x f F f j X supp 0 G dom k x D | x f F f j X
182 eqid k x D | x f F f j X = k x D | x f F f j X
183 182 dmmptss dom k x D | x f F f j X x D | x f F f j
184 181 183 sstri k x D | x f F f j X supp 0 G x D | x f F f j
185 184 a1i φ j S k x D | x f F f j X supp 0 G x D | x f F f j
186 suppssfifsupp k x D | x f F f j X V Fun k x D | x f F f j X 0 G V x D | x f F f j Fin k x D | x f F f j X supp 0 G x D | x f F f j finSupp 0 G k x D | x f F f j X
187 177 179 180 92 185 186 syl32anc φ j S finSupp 0 G k x D | x f F f j X
188 4 73 173 92 10 187 17 gsumf1o φ j S G k x D | x f F f j X = G k x D | x f F f j X m x D | x f F f j F f j f m
189 66 oveq2d φ j S G k x D | x f F f j X m x D | x f F f j F f j f m = G m x D | x f F f j F f m f j / k X
190 188 189 eqtrd φ j S G k x D | x f F f j X = G m x D | x f F f j F f m f j / k X
191 190 mpteq2dva φ j S G k x D | x f F f j X = j S G m x D | x f F f j F f m f j / k X
192 191 oveq2d φ G j S G k x D | x f F f j X = G j S G m x D | x f F f j F f m f j / k X
193 101 172 192 3eqtr4d φ G n S G j x D | x f n Y = G j S G k x D | x f F f j X