Step |
Hyp |
Ref |
Expression |
1 |
|
gsumbagdiag.d |
|
2 |
|
gsumbagdiag.s |
|
3 |
|
gsumbagdiag.f |
|
4 |
|
simprr |
|
5 |
|
breq1 |
|
6 |
5
|
elrab |
|
7 |
4 6
|
sylib |
|
8 |
7
|
simpld |
|
9 |
7
|
simprd |
|
10 |
3
|
adantr |
|
11 |
|
simprl |
|
12 |
|
breq1 |
|
13 |
12 2
|
elrab2 |
|
14 |
11 13
|
sylib |
|
15 |
14
|
simpld |
|
16 |
1
|
psrbagf |
|
17 |
15 16
|
syl |
|
18 |
14
|
simprd |
|
19 |
1
|
psrbagcon |
|
20 |
10 17 18 19
|
syl3anc |
|
21 |
20
|
simprd |
|
22 |
1
|
psrbagf |
|
23 |
10 22
|
syl |
|
24 |
23
|
ffnd |
|
25 |
10 24
|
fndmexd |
|
26 |
1
|
psrbagf |
|
27 |
8 26
|
syl |
|
28 |
20
|
simpld |
|
29 |
1
|
psrbagf |
|
30 |
28 29
|
syl |
|
31 |
|
nn0re |
|
32 |
|
nn0re |
|
33 |
|
nn0re |
|
34 |
|
letr |
|
35 |
31 32 33 34
|
syl3an |
|
36 |
35
|
adantl |
|
37 |
25 27 30 23 36
|
caoftrn |
|
38 |
9 21 37
|
mp2and |
|
39 |
|
breq1 |
|
40 |
39 2
|
elrab2 |
|
41 |
8 38 40
|
sylanbrc |
|
42 |
|
breq1 |
|
43 |
17
|
ffvelrnda |
|
44 |
27
|
ffvelrnda |
|
45 |
23
|
ffvelrnda |
|
46 |
|
nn0re |
|
47 |
|
nn0re |
|
48 |
|
nn0re |
|
49 |
|
leaddsub2 |
|
50 |
|
leaddsub |
|
51 |
49 50
|
bitr3d |
|
52 |
46 47 48 51
|
syl3an |
|
53 |
43 44 45 52
|
syl3anc |
|
54 |
53
|
ralbidva |
|
55 |
|
ovexd |
|
56 |
27
|
feqmptd |
|
57 |
17
|
ffnd |
|
58 |
|
inidm |
|
59 |
|
eqidd |
|
60 |
|
eqidd |
|
61 |
24 57 25 25 58 59 60
|
offval |
|
62 |
25 44 55 56 61
|
ofrfval2 |
|
63 |
|
ovexd |
|
64 |
17
|
feqmptd |
|
65 |
27
|
ffnd |
|
66 |
|
eqidd |
|
67 |
24 65 25 25 58 59 66
|
offval |
|
68 |
25 43 63 64 67
|
ofrfval2 |
|
69 |
54 62 68
|
3bitr4d |
|
70 |
9 69
|
mpbid |
|
71 |
42 15 70
|
elrabd |
|
72 |
41 71
|
jca |
|